
0

ecture otes n IcsN 1 Phys
Editorial Board

R. Beig, Vienna, Austria

J. Ehlers, Potsdam, Germany
U. Frisch, Nice, France

K. Hepp, Zfirich, Switzerland
R. L. Jaffe, Cambridge, MA, USA
R. Kippenhahn, G6ttingen, Germany
I. Ojima, Kyoto, Japan
H. A. Weidenmiiller, Heidelberg, Germany
J. Wess, Mfinchen, Germany
J. Zittartz, K61n, Germany

Managing Editor

W. Beiglb6ck
Assisted by Mrs. Edwina Pfendbach
c/o Springer-Verlag, Physics Editorial Department II

Tiergartenstrasse 17, D-6912i Heidelberg, Germany

Springer
Berlin

Heidelberg
New York
Barcelona

Hong Kong
London
Milan
Paris

Singapore
Tokyo



The Editorial Policy for Proceedings
The series Lecture Notes in Physics reports new developments in physical research and teaching - quickly,
informally, and at a high level. The proceedings to be considered for publication in this series should be limited
to only a few areas of research, and these should be closely related to each other. The contributions should be
of a high standard and should avoid lengthy redraftings of papers already published or about to be published
elsewhere. As a whole, the proceedings should aim for a balanced presentation ofthe theme of the conference

including a description of the techniques used and enough motivation for a broad readership. It should not

be assumed that the published proceedings must reflect the conference in its entirety. (A listing or abstracts
of papers presented at the meeting but not included in the proceedings could be added as an appendix.)
When applying for publication in the series Lecture Notes in Physics the volume's editor(s) should submit
sufficient material to enable the series editors and their referees to make a fairly accurate evaluation (e.g. a

complete list of speakers and titles of papers to be presented and abstracts). If, based on this information, the

proceedings are (tentatively) accepted, the volume's editor(s), whose name(s) will appear on the title pages,
should select the papers suitable for publication and have them refereed (as for a journal) when appropriate.
As a rule discussions will not be accepted. The series editors and Springer-Verlag will normally not interfere
with the detailed editing except in fairly obvious cases or on technical matters.

Final acceptance is expressed by the series editor in charge, in consultation with Springer-Verlag only after

receiving the complete manuscript. It might help to send a copy of the authors' manuscripts in advance to

the editor in charge to discuss possible revisions with him. As a general rule, the series editor will confirm
his tentative acceptance if the final manuscript corresponds to the original concept discussed, if the quality of
the contribution meets the requirements of the series, and if the final size of the manuscript does not greatly
exceed the number of pages originally agreed upon. The manuscript should be forwarded to Springer-Verlag
shortly after the meeting. In cases of extreme delay (more than six months after the conference) the series

editors will check once more the timeliness of the papers. Therefore, the volume's editor(s) should establish
strict deadlines, or collect the articles during the conference and have them revised on the spot. If a delay is

unavoidable, one should encourage the authors to update their contributions if appropriate. The editors of

proceedings are strongly advised to inform contributors about these points at an early stage.
The final manuscript should contain a table of contents and an informative introduction accessible also to

readers not particularly familiar with the topic ofthe conference. The contributions should be in English. The
volume's editor(s) should check the contributions for the correct use of language. At Springer-Verlag only the
prefaces will be checked by a copy-editor for language and style. Grave linguistic or technical shortcomings
may lead to the rejection of contributions by the series editors. A conference report should not exceed a total
of 5oo pages. Keeping the size within this bound should be achieved by a stricter selection of articles and not

by imposing an upper limit to the length of the individual papers. Editors receive jointly 30 complimentary
copies of their book. They are entitled to purchase further copies of their book at a reduced rate. As a rule no

reprints of individual contributions can be supplied. No royalty is paid on Lecture Notes in Physics volumes.
Commitment to publish is made by letter of interest rather than by signing a formal contract. Springer-Verlag
secures the copyright for each volume.

The Production Process

The books are hardbound, and the publisher will select quality paper appropriate to the needs ofthe author(s).
Publication time is about ten weeks. More than twenty years of experience guarantee authors the best possible
service. To reach the goal of rapid publication at a low price the technique of photographic reproduction from
a camera-ready manuscript was chosen. This process shifts the main responsibility for the technical quality
considerably from the publisher to the authors. We therefore urge all authors and editors of proceedings to

observe very carefully the essentials for the preparation ofcamera-ready manuscripts, which we will supply on
request. This applies especially to the quality of figures and halftones submitted for publication. In addition,
it might be useful to look at some of the volumes already published. As a special service, we offer free of

charge BTEX and TEX macro packages to format the text according to Springer-Verlag's quality requirements.
We strongly recommend that you make use of this offer, since the result will be a book of considerably
improved technical quality. To avoid mistakes and time-consuming correspondence during the production
period the conference editors should request special instructions from the publisher well before the beginning
of the conference. Manuscripts not meeting the technical standard of the series will have to be returned for

improvement.
For further information please contact Springer-Verlag, Physics Editorial Department II, Tiergartenstrasse 17,

D-69121 Heidelberg, Germany



Friedrich W. Hehl Claus Kiefer

RalPh J.K. Metzler (Eds.)

Black Holes:

heory and Observation

Proceedings of the 179th W.E. Heraeus Seminar

Held at Bad Honnef, Germany, 18-22 August 1997

Springer



Editors

Friedrich W. Hehl

Ralph J.K. Metzler
Institut ffir Theoretische Physik
Universitdt zu K61n
D-50923 K61n, Germany

Claus Kiefer
Fakultat ffir Physik
Universitift Freiburg
Hermann-Herder-Strasse 3
D-79104 Freiburg, Germany

Library of Congress Cataloging-in-Publication Data.

Die Deutsche Bibliothek - CIP-Einheitsaufiiahme

Black holes: theory and observation / 179. WE-Heraeus-Seminar,
held at Physikzentrum Bad Honnef, Germany, 18 - 22 August 1997
F. Hehl

... (ed.). - Berlin ; Heidelberg ; New York; Barcelona ; Hong
Kong ; London ; Milan ; Paris ; Singapore ; Tokyo : Springer, 1998

(Lecture notes in physics ; Vol. 514)
ISBN 3-540-65158-6

ISSN 0075-8450
ISBN 3-540-65158-6 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustra-
tions, recitation, broadcasting, reproduction on microfilm or in any other way, and

storage in data banks. Duplication of this publication or parts thereof is permitted only
under the provisions of the German Copyright Law of September 9, 1965, in its current

version, and permission for use must always be obtained from Springer-Verlag. Violations
are liable for prosecution under the German Copyright Law.

@ Springer-Verlag Berlin Heidelberg 1998
Printed in Germany
The use ofgeneral descriptive names, registered names, trademarks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.

Typesetting: Camera-ready by the authors/editors
Cover design: design &production, Heidelberg
SPIN:lo644238 55/3144 - 5 4 3 2 10 - Printed on acid-free paper



Preface

Black holes are among the most fascinating objects in Nature. Being originally
only of interest to theoretical physicists, they are now - thirty years after the

name "black holes" was introduced - also an important target in observational

astronomy.
The purpose of the 179th WE-Heraeus Seminar, which we organized in Bad

Honnef in August 1997, was to give an overview of our present knowledge on

black holes. It was our aim to cover all aspects of black hole physics: classical
and quantum aspects, astrophysical, observational, and numerical aspects. From
this wide range of topics it becomes clear that black hole physics constitutes an

interdisciplinary subject par excellence. We hope that the consideration of all

these aspects in one book will give a useful addition to other, more specialized,
volumes.

We thank all speakers for their work in preparing and holding their lectures,
leading to a most successful meeting. Most of the lectures can be found in the

present volume, and we are grateful for the willingness of the speakers to write up
their talks. We also include some articles which are not based on lectures given at

the seminar, but which constitute a useful supplement to them. In addition, the
reader will also find short statements which were made at the panel discussion

on "The definite proofs of the existence of black holes". The general consensus

from this discussion was that the existence of black holes has now practically
been proved with certainty.

Last but not least we want to thank the WE-Heraeus Foundation for the

generous support without which the seminar in this form could not have taken

place.

Cologne and Reiburg, September 1998

Friedrich W. Hehl

Claus Kiefer

Ralph J.K. Metzler
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Black Holes: A General Introduction

Jean-Pierre Luminet

Observatoire de Paris-Meudon, D6partement d'Astrophysique Relativiste et de

Cosmologie, MRS UPR-176, F-92195 Meudon Cedex, France

Abstract. Our understanding of space and time is probed to its depths by black holes.

These objects, which appear as a natural consequence of general relativity, provide a

powerful analytical tool able to examine macroscopic and microscopic properties of the

universe. This introductory article presents in a pictorial way the basic concepts of

black hole's theory, as well as a description of the astronomical sites where black holes

are suspected to lie, namely binary X-ray sources and galactic nuclei.

1 The Black Hole Mystery

Let me begin with an old Persian story. Once upon a time, the butterflies orga-
nized a summer school devoted to the great mystery of the flame. Many discussed

about models but nobody could convincingly explain the puzzle. Then a bold

butterfly enlisted as a volunteer to get a real experience with the flame. He flew

off to the closest castle, passed in front of a window and saw the light of a candle.

He went back, very excited, and told what he had seen. But the wise butterfly
who was the chair of the conference said that they had no more information

than before. Next, a second butterfly flew off to the castle, crossed the window

and touched the flame with his wings. He hardly came back and told his story;
the wise chairbutterfly said "your explanation is no more satisfactory". Then

a third butterfly went to the castle, hit the candle and burned himself into the

flame. The wise butterfly, who had observed the action, said to the others: "Well,
our friend has learned everything about the flame. But only him can know, and

that's all"
-

As you can guess, this story can easily be transposed from butterflies to sci-

entists confronted with the mystery of black holes. Some astronomers, equipped
with powerful instruments such as orbiting telescopes, make very distant and

indirect observations on black holes; like the first butterfly, they acknowledge
the real existence of black holes but they gain very little information on their

real nature. Next, theoretical physicists try to penetrate more deeply into the

black hole mystery by using tools such as general relativity, quantum mechanics

and higher mathematics; like the second butterfly, they get a little bit more in-

formation, but not so much. The equivalent of the third butterfly would be an

astronaut plunging directly into a black hole, but eventually he will not be able

to go back and tell his story. Nevertheless, by using numerical calculations, such

as those performed at the Observatoire de Meudon which I will show you later,
outsiders can get some idea of what happens inside a black hole.

F.W. Hehl, C. Kiefer, R.J.K. Metzler (Eds.): LNP 514, pp. 3 - 34, 1998
© Springer-Verlag Berlin Heidelberg 1998



4 Jean-Pierre Luminet

2 Physics of Black Holes

2.1 Light imprisoned

Let us begin to play like the second butterfly, and explore the black hole from
the point of view of theoretical physics. An elementary definition of a black hole
is a region of space-time in which the gravitational potential, GMIR, exceeds
the square of the speed of light, c2. Such a statement has the merit to be inde-

pendent of the details of gravitational theories. It can be used in the framework
of Newtonian theory. It also provides a more popular definition of a black hole,
according to which any astronomical body whose escape velocity exceeds the

speed of light must be a black hole. Indeed, such a reasoning was done two cen-

turies ago by John Michell and Pierre-Simon de Laplace. In the Philosophical
Transactions of the Royal Society (1784), John Michell pointed out that "if the
semi diameter of a sphere of the same density with the sun were to exceed that
of the sun in the proportion of 500 to 1, (... ) all light emitted from such a body
would be made to return towards it", and independently, in 1796, Laplace wrote

in his Exposition du Syst me du Monde: "Un astre lumineux de m6me densit6

que la terre et dont le diam6tre serait deux cents cinquante fois plus grand que
celui du soleil, ne laisserait, en vertu de son attraction, parvenir aucun de ses

rayons jusqu'h nous ; il est donc possible que les plus grands corps lumineux
de Funivers soient, par cela m me, invisibles". Since the density imagined at

this time was that of ordinary matter, the size and the mass of the associated
"invisible body" were huge - around 107 solar masses, corresponding to what
is called today a "supermassive" black hole. Nevertheless, from the numerical

figures first proposed by Michell and Laplace, one can recognize the well-known
basic formula giving the critical radius of a body of mass M:

2GM M
Rs -- 2-- ;zz 3- km, (1)

MO

where Me is the solar mass. Any spherical body of mass M confined within the
critical radius RS must be a black hole.

These original speculations were quickly forgotten, mainly due to the devel-

opment of the wave theory of light, within the framework of which no calculation
of the action of gravitation on light propagation was performed. The advent of

general relativity, a fully relativistic theory of gravity in which light is submit-
ted to gravity, gave rise to new speculations and much deeper insight into black
holes.

To pictorially describe black holes in space-time, I shall use light cones. Let
me recall what a light cone is. In figure 1, a luminous flash is emitted at a

given point of space. The wavefront is a sphere expanding at a velocity of about
c = 300 OOOkm/s, shown in a) at three successive instants. The light cone

representation in b) tells the complete story of the wavefront in a single space-
time diagramspacetime!diagram. As one space dimension is removed, the spheres
become circles. The expanding circles of light generate a cone originating at the
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emission point. If, in this diagram, we choose the unit of length as 300 000 krn

and the unit of time as 1 second, all the light rays travel at 45'.

t t 2 t3

(a) Spatial representation (b) The light cone

Fig. 1 The light cone.

The light cone allows us to depict the causal structure of any space-time. Take

for instance the Minkowski flat space-time used in Special Relativity (figure 2).
At any event E of space-time, light rays generate two cones (shaded zone). The

rays emitted from E span the future light cone, those received in E span the past
light cone. Physical particles cannot travel faster than light: their trajectories
remain confined within the light cones. No light ray or particle which passes

Figs. 2 and 3 The space-time continuum of Special Relativity and the soft space-time
of General Relativity.
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through E is able to penetrate the unshaded zone. The invariance of the speed
of light in vacuum is reflected by the fact that all the cones have the same

slope. This is because the space-time continuum of Special Relativity, free from

gravitating matter, is flat and rigid. As soon as gravity is present, space-time
is curved and Special Relativity leaves room to General Relativity. Since the

Equivalence Principle states the influence of gravity on all types of energy, the

light cones follow the curvature of space-time (figure 3). They bend and deform

themselves according to the curvature. Special Relativity remains locally valid

however: the worldlines of material particles remain confined within the light
cones, even when the latter are strongly tilted and distorted by gravity.

2.2 Spherical collapse

Let us now examine the causal structure of space-time around a gravitationally
collapsing star - a process which is believed to lead to black hole formation.

Figure 4 shows the complete history of the collapse of a spherical star, from its

initial contraction until the formation of a black hole and a singularity. Two

space dimensions are measured horizontally, and time is on the vertical axis,
measured upwards. The centre of the star is at r = 0. The curvature of space-
time is visualized by means of the light cones generated by the trajectories of

light rays. Far away from the central gravitational field, the curvature is so

weak that the light cones remain straight. Near the gravitational field, the cones

are distorted and tilted inwards by the curvature. On the critical surface of

radius r = 2M, the cones are tipped over at 45' and one of their generators
becomes vertical, so that the allowed directions of propagation of particles and

electromagnetic waves are oriented towards the interior of this surface. This is

the event horizon, the boundary of the black hole (grey region). Beyond this, the

stellar matter continues to collapse into a singularity of zero volume and infinite

density at r = 0. Once a black hole has formed, and after all the stellar matter

has disappeared into the singularity, the geometry of space-time itself continues

to collapse towards the singularity, as shown by the light cones.

The emission of the light rays at El, E2, E3 and E4 and their reception by
a distant astronomer at RI, R2, R3 i ...

well illustrate the difference between the

proper time, as measured by a clock placed on the surface of the star, and the

apparent time, measured by an independent and distant clock. The (proper)
time interval between the four emission events are equal. The corresponding
reception intervals become longer and longer. At the limit, light ray emitted

from E4, just when the event horizon is forming, takes an infinite time to reach

the distant astronomer. This phenomenon of "frozen time" is just an illustration

of the extreme elasticity of time predicted by Einstein's relativity, according to

which time runs differently for two observers with a relative acceleration - or,

from the Equivalence Principle, in different gravitational potentials. A striking
consequence is that any outer astronomer will never be able to see the formation

of a black hole. The figure 5 shows a picturesque illustration of frozen time. A

spaceship has the mission of exploring the interior of a black hole - preferably a
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distant
astronomer

Fig. 4 A space-time diagram showing the formation of a black hole by gravitational
collapse.

big one, so that it is not destroyed too quickly by the tidal forces. On board the

ship, the commander sends a solemn salute to mankind, just at the moment when
the ship crosses the horizon. His gesture is transmitted to distant spectators via

television. The film on the left shows the scene on board the spaceship in proper
time, that is, as measured by the ship's clock as the ship falls into the black hole.
The astronaut's salute is decomposed into instants at proper time intervals of

0.2 second. Crossing of the event horizon (black holes have not a hard surface) is

not accompanied by any particular event. The film on the right shows the scene

received by distant spectators via television. It is also decomposed into intervals
of apparent time of 0.2 second. At the beginning of his gesture, the salute is

slightly slower than the real salute, but initially the delay is too small to be
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Proper time FilmA Film B
Apparent timein seconds

I in seconds
0.00 Q /M- Q 0.00

0.20 11 'R 9 0.20

0.40 tj 6M tj M 6"M M 0.40

0.60 M 'a '8 =M M 0.60

0.80 M
0.80

Crossing 10
the horizon Liu

1.00 0
1000.00

'Ak
UU

OW
%1.20

CD

Fig. 5 The astronaut's salute.

noticed, so the films are practically identical. It is only very close to the horizon

that apparent time starts suddenly to freeze; the film on the right then shows

the astronaut eternally frozen in the middle of his salute, imperceptibly reaching
the limiting position where he crossed the horizon. Besides this effect, the shift

in the frequencies in the gravitational field (the so-called Einstein effect) causes

the images to weaken, and they soon become invisible.

All these effects follow rather straightforwardly from certain equations. In

General Relativity, the vacuum space-time around a spherically symmetric body
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Apparent time

Proper ti
Horizon

Singularity _L_
Time

Fig. 6 The two times of a black hole.

is described by the Schwarzschild metric:

d82
2M

dt2 + 1 _
2M

dr2 + r2 dR2, (2)
r r

where dQ2 = d02 + sin20 d02 is the metric of a unit 2-sphere, and we have

set the gravitational constant G and the speed of light c equal to unity. The

solution describes the external gravitational field generated by any spherical
mass, whatever its radius (Birkhoff's theorem, 1923).

When the radius is greater than 2M, there exists "interior solutions" de-

pending on the equation of state of the stellar matter, which are non-singular
at r = 0 and that match the exterior solution. However, as soon as the body is

collapsed under its critical radius 2M, the Schwarzschild metric is the unique so-

lution for the gravitational field generated by a spherical black hole. The event

horizon, a sphere of radius r = 2M, is a coordinate singularity which can be

removed by a suitable coordinate transformation (see below). There is a true

gravitational singularity at r - 0 (in the sense that some curvature components
diverge) that cannot be removed by any coordinate transformation. Indeed the

singularity does not belong to the space-time manifold itself. Inside the event

horizon, the radial coordinate r becomes timelike. Hence every particle that

crosses the event horizon is unavoidably catched by the central singularity. For

radial free-fall along a trajectory with r 0, the proper time (as measured by
a comoving clock) is given by

TO -
4M r ) 3/2

(3)
3 2M

and is well-behaved at the event horizon. The apparent time (as measured by a

distant observer) is given by

t=-r-4M( r 1/2
+ 2MIn -

Vr/_2M + 1
(4)2M) Vr_/_2M- 1
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and diverges to infinity as r -* 2M, see figure 6.

The Schwarzschild coordinates, which cover only 2M < r < oo, -oo < t <

+oo, are not well adapted to the analysis of the causal structure of space-time
near the horizon, because the light cones, given by dr = (1 - T) dt, are not

defined on the event horizon. We better use the so-called Eddington-Finkelstein
coordinates - indeed discovered by LemaAre in 1933 but they remained unno-

ticed. Introducing the "ingoing" coordinate

v = t + r + 2M In (2M - 1) (5)

the Schwarzschild metric becomes

ds2 = -(I -

2M
) dV2 + 2dv dr + r2 dfl2. (6)

Now the light cones are perfectly well behaved. The ingoing light rays are given
by

dv = 0, (7)

the outgoing light rays by

dv
2dr

(8)2M
r

The metric can be analytically continued to all r > 0 and is no more singular at

r = 2M. Indeed, in figure 4 such a coordinate system was already used.

2.3 Non-spherical collapse

A black hole may well form from an asymmetric gravitational collapse. However

the deformations of the event horizon are quickly dissipated as gravitational
radiation; the event horizon vibrates according to the so-called "quasi-normal
modes" and the black hole settles down into a final axisymmetric equilibrium
configuration.

The deepest physical property of black holes is that asymptotic equilibrium
solutions depend only on three parameters: the mass, the electric charge and

the angular momentum. All the details of the infalling matter other than mass,
electric charge and angular momentum are washed out. The proof followed from
efforts for over 15 years by half a dozen of theoreticians, but it was originally
suggested as a conjecture by John Wheeler, who used the picturesque formulation
"a black hole has no hair". Markus Heusler's lectures in Chap. 7 will develop
this so-called "uniqueness theorem".

As a consequence, there exists only 4 exact solutions of Einstein's equations
describing black hole solutions with or without charge and angular momentum:

- The Schwarzschild solution (1916) has only mass M; it is static, spherically
symmetric.
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Fig. 7 Gravitational collapse of a star.

- The Reissner-Nordstr6m!solution (1918), static, spherically symmetric, de-

pends on mass M and electric charge Q.

- The Kerr solution (1963), stationary, axisymmetric, depends on mass M and

angular momentum J.

- The Kerr-Newman solution (1965), stationary and axisymmetric, depends
on all three parameters M, J, Q.

The 3-parameter Kerr-Newman family is the most general solution, correspond-
ing to the final state of black hole equilibrium. In Boyer-Lindquist coordinates,
the Kerr-Newman metric is given by

ds2 = _(1 -

2Mr
) dt2 - 4Mra

sin2o
dt do

Z Z

+ (r2 + a2 + 2Mra2sin2 sin2OdO2 + dr2 + Z d02'Z (9)

where A -= r
2
- 2Mr + a2 + Q2, r2+ a

2 COS2 0, and a =- JIM is the

angular momentum per unit mass. The event horizon is located at distance

r+ = M + VM2 - Q2 - a2.

From this formula we can see, however, that the black hole parameters cannot

be arbitrary. Electric charge and angular momentum cannot exceed values cor-

responding to the disappearance of the event horizon. The following constraint

must be satisfied: a2 + Q2 < m2.
When the condition is violated, the event horizon disappears and the solution

describes a naked singularity instead of a black hole. Such odd things should not
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exist in the real universe (this is the statement of the so-called Cosmic Censor-

ship Conjecture, not yet rigorously proved). For instance, for uncharged rotating
configuration, the condition J,,,,,, = M2 corresponds to the vanishing of surface

gravity on the event horizon, due to "centrifugal forces"; the corresponding solu-

tion is called extremal Kerr solution. Also, the maximal allowable electric charge
X
= M ;Zz 104is Qma. Oe MIMD, where e is the electron charge, but it is to be no-

ticed that in realistic situations, black holes should not be significantly charged.
This is due to the extreme weakness of the gravitational interaction compared to

the electromagnetic interaction. Suppose a black hole forms with initial positive
charge Qi of order M. Under realistic conditions, the black hole is not isolated in

empty space but is surrounded by charged particles of the interstellar medium,
e.g. protons and electrons. The black hole will predominantly attract electrons

with charge -e and repel protons with charge +e by its electromagnetic field,
and predominantly attract protons of mass mp by its gravitational field. The

repulsive electrostatic force on protons is larger than the gravitational pull by
a factor of eQ/mpM ;z: e/mp P: 10". Therefore, the black hole will neutral-

ize itself almost instantaneously. As a consequence, the Kerr solution, obtained

in equation (9) by putting Q = 0, can be used for any astrophysical purpose

involving black holes. It is also a good approximation to the metric of a (not
collapsed) rotating star at large distance, but it has not been matched to any
known solution that could represent the interior of a star.

The Kerr metric in Boyer-Lindquist coordinates has singularities on the axis

of symmetry 0 = 0 - obviously a coordinate singularity - and for A = 0. One

can write A = (r - r+)(r - r-) with r+ = M +..V/M2 - a2- The distance r+
defines the outer event horizon (the surface of the rotating black hole), whereas

r- defines the inner event horizon. Like in Schwarzschild metric (where r+ and

r- coincide at the value 2M), the singularities at r = r+, r = r- are coordinate

singularities which can be removed by a suitable transformation analogous to the

ingoing Eddington-Finkelstein coordinates for Schwarzschild space-time. For full
mathematical developments of Kerr black holes, see Chandrasekhar (1992) and
O'Neill (1995).

2.4 The black hole maelstrom

There is a deep analogy between a rotating black hole and the familiar phe-
nomenon of a vortex - such as a giant maelstrom produced by sea currents. If

we cut a light cone at fixed time (a horizontal plane in figure 8), the resulting
spatial section is a "navigation ellipse" which determines the limits of the per-
mitted trajectories. If the cone tips over sufficiently in the gravitational field,
the navigation ellipse detaches itself from the point of emission. The permitted
trajectories are confined within the angle formed by the tangents of the circle,
and it is impossible to go backwards.

This projection technique is useful to depict the causal structure of space-
time around a rotating black hole (figure 9). The gravitational well caused by
a rotating black hole resembles a cosmic maelstrom. A spaceship travelling in
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Figs. 8 and 9 Navigation circles in the black hole maelstrom.

the vicinity is sucked towards the centre of the vortex like a boat. In the region
outside the so-called static limit (clear), it can navigate to wherever it wants. In
the zone (in grey) comprised between the static limit and the event horizon, it

is forced to rotate in the same direction as the black hole; its ability to navigate
freely is decreased as it is sucked inwards, but it can still escape by travelling in

an outwards spiral. The dark zone represents the region inside the event horizon:

any ship which ventured there would be unable to escape even if it was travelling
at the speed of light. A fair illustration is the Edgar Poe's short story: A descent
into the maelstrom (1840).

The static limit is a hypersurface of revolution, given by the equation r

M+ VM_2 - a2 cos2 0. As we can see from figure 10, it intersects the event horizon
at its poles 0 - 0, 7r but it lies outside the horizon for other values of 0. The

region between the static limit and the event horizon is called ergosphere. There,
all stationary observers must orbit the black hole with positive angular velocity.
The ergosphere contains orbits with negative energy. Such a property has lead
to the idea of energy extraction from a rotating black hole. Roger Penrose (1969)
suggested the following mechanism: A distant experimentalist fires a projectile
in the direction of the ergosphere along a suitable trajectory (figure 10). When
it arrives the projectile splits into two pieces: one of them is captured by the
black hole along a retrograde orbit, while the other flies out of the ergosphere
and is recovered by the experimentalist. Penrose has demonstrated that the

experimentalist could direct the projectile in such a way that the returning
piece has a greater energy than that of the initial projectile. This is possible if
the fragment captured by the black hole is travelling in a suitable retrograde
orbit (that is orbiting in the opposite sense to the rotation of the black hole),
so that when it penetrates the black hole it slightly reduces the hole's angular
momentum. The net result is that the black hole loses some of its rotational

navigation
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Fig. 10 Cross-section of a rotating black hole.

energy and the difference is carried away by the escaping fragment.

The amount of energy that can theoretically be extracted from a black hole
has been calculated by Christodolou and Ruffini (1971). The total mass-energy
of a black hole is

M2 =

J2 Q2 2

- + Mi, (10)4Mi2,
+

4Mi,

)2 2where Mi, (M + V M2 - Q2 - a2 + a .
The first term corresponds toV(M -

the rotational energy, the second one to the Coulomb energy, the third one to

an "irreducible" energy. The rotational energy and the Coulomb energy are ex-

tractable by physical means such as the Penrose process, the superradiance (anal-
ogous to stimulated emission in atomic physics) or electrodynamical processes
(see Norbert Straumann's lectures in Chap. 6 for details), while the irreducible

part cannot be lowered by classical (e.g. non quantum) processes. The maximum
extractable energy is as high as 29 per cent for rotational energy and 50 per cent

for Coulomb energy. It is much more efficient that, for instance, nuclear energy
release (0.7 per cent for hydrogen burning).
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2.5 Black hole thermodynamics

It is interesting to mention that the irreducible mass is related to the area A
of the event horizon by Mi, = V/rA--/167r. Therefore the area of an event hori-
zon cannot decrease in time by any classical process. This was first noticed by
Stephen Hawking, who drew the striking analogy with ordinary thermodynam-
ics, in which the entropy of a system never decreases in time. Such a property has
motivated a great deal of theoretical efforts in the 1970's to better understand
the laws of black hole dynamics - i.e. the laws giving the infinitesimal variations
of mass, area and other black hole quantities when a black hole interacts with
the external universe - and to push the analogy with thermodynamical laws. For
the development of black hole thermodynamics, see G. Neugebauer's and W. Is-
rael's lectures in Chaps. 16 to 18. Let me just recall that black hole mechanics
is governed by four laws which mimic classical thermodynamics:

- Zeroth law.

In thermodynamics: all parts of a system at thermodynamical equilibrium
have equal temperature T.

In black hole mechanics: all parts of the event horizon of a black hole at

equilibrium have the same surface gravity g. The surface gravity is given
by Smarr's formula M = gA/47r + 2f2HJ +  PHQ, where QH is the angular
velocity at the horizon and !PH is the co-rotating electric potential on the
horizon. This is a quite remarkable property when one compares to ordinary
astronomical bodies, for which the surface gravity depends on the latitude.
Whatever a black hole is flattened by centrifugal forces, the surface gravity
is the same at every point.

- First Law.

In thermodynamics: the infinitesimal variation of the internal energy U of
a system with temperature T at pressure P is related to the variation of
entropy dS and the variation of pressure dP by dU = TdS - PdV.

In black hole dynamics: the infinitesimal variations of the mass M, the charge
Q and the angular momentum J of a perturbed stationary black hole are

related by dM - 9 dA + f?HdJ +  PHdQ.87r

- Second Law.

In thermodynamics, entropy can never decrease: dS > 0.

In black hole dynamics, the area of event horizon can never decrease: dA > 0.

This law implies, for instance, that the area of a black hole resulting from
the coalescence of two parent black holes is greater than the sum of areas

of the two parent black holes (see figure 11). It also implies that black holes
cannot bifurcate, namely a single black hole can never split in two parts.



16 Jean-Pierre Luminet

Growth of a
Collision of two

black hole black holes

For
bla(

Fig. 11 The irreversible growth of black holes.

Third law.

In thermodynamics, it reflects the inaccessibility of the absolute zero of tem-

perature, namely it is impossible to reduce the temperature of a system to

zero by a finite number of processes.

In black hole mechanics, it is impossible to reduce the surface gravity to zero

by a finite number of operations. For Kerr black holes, we have seen that

zero surface gravity corresponds to the "extremal" solution J = MI.

It is clear that the area of the event horizon plays formally the role of an

entropy, while the surface gravity plays the role of a temperature. However,
as first pointed out by Bekenstein, if black holes had a real temperature like

thermodynamical systems, they would radiate energy, contrarily to their basic

definition. The puzzle was solved by Hawking when he discovered the evaporation
of mini-black holes by quantum processes.

2.6 The quantum black hole

The details of Hawking radiation and the - not yet solved - theoretical diffi-

culties linked to its interpretation are discussed by other lecturers (by Gerard

't Hooft in Chap. 21, Andreas Wipf in Chap. 19, and Claus Kiefer in Chap. 20).
Therefore I shall only present the basic idea in a naive pictorial way (figure 12).
The black hole's gravitational field is described by (classical) general relativity,
while the surrounding vacuum space-time is described by quantum field theory.
The quantum evaporation process is analogous to pair production in a strong

space Formation
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Fig. 12 The quantum evaporation of a mini-black hole by polarization of the vacuum.

magnetic field due to vacuum polarization. In the Fermi sea populated by virtual

pairs of particles-antiparticles which create and annihilate themselves, the four

various possible processes are depicted schematically in figure 12.

Some virtual pairs emerging from the quantum vacuum just annihilate out-

side the horizon (process I). Some pairs produced in the vicinity of the black hole

disappear completely in the event horizon (process IV) -
Some pairs are split, one

particle (or antiparticle) escaping the black hole, the other one being captured
(processes II and III). The calculations show that the process II is dominant, due

to the (classical) gravitational potential which polarizes the quantum vacuum.

As a consequence, a black hole radiates particles with a thermal spectrum char-

acterized by a blackbody temperature precisely given by the formula suggested
by the thermodynamical analogy:

T = h
9
- 10- 7 MO Kelvin, (11)

27r M

where h is Planck's constant. We immediately see that the temperature is com-

pletely negligible for any astrophysical black hole with mass comparable or

greater to the solar mass. But for mini-black holes with masses 10" g (the typ-
ical mass of an asteroid), the Hawking temperature is 1012 K. Since the black

hole radiates away, it loses energy and evaporates on a timescale approximately
given by

tE   1010 years 1015M (12)
grams
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Thus, mini-black holes whose mass is smaller than that of an asteroid (and size

less than 10-13cm) evaporate on a timescale shorter than the age of the universe.

Some of them should evaporate now and give rise to a huge burst of high energy
radiation. Nothing similar has ever been observed (-y-ray bursts are explained
quite differently). Such an observational constraint thus limits the density of

mini-black holes to be less than about 100/(lightyear)3.
The black hole entropy is given by

S
kB A

(13)
h 4

(where kB is Boltzmann's constant), a formula which numerically gives S -":Z 

10"kB ( M )' for a Schwarzschild black hole. Since the entropy of a non-collapsedMG
star like the Sun is approximately 105%, we recover the deep meaning of the

"no hair" theorem, according to which black holes are huge entropy reservoirs.

By Hawking radiation, the irreducible mass, or equivalently the event horizon

area of a black hole decreases, in violation of the Second Law of black hole

mechanics. The latter has to be generalized to include the entropy of matter

in exterior space-time. Then, the total entropy of the radiating black hole is

S = SBH + S,,,t and, since the Hawking radiation is thermal, S,.,t increases, so

that eventually S is always a non-decreasing function of time.

To conclude briefly the subject, even if mini-black holes are exceedingly rare,

or even if they do not exist at all in the real universe because the big bang could

not have produced such fluctuations, they represent a major theoretical advance

towards a better understanding of the link between gravity and quantum theory.

2.7 Space-time mappings

Various mathematical techniques allow the geometer to properly visualize the

complex space-time structure generated by black holes.

Embedding diagram - The space-time generated by a spherical mass M has
the Schwarzschild metric:

ds2 1 -
2M(r) dt2 + 1-

2M(r)
-1

dr2 + r2W2 (14)
r r

where M(r) is the mass comprised within the radius r. Since the geometry is

static and spherically symmetric, we do not lose much information in considering
only equatorial slices 0 = 7r/2 and time slices t constant. We get then a

curved 2-geometry with metric (1 -
r

)-ldr2 +,r2 d02. Such a surface can be
visualized by embedding it in Euclidean 3-space ds2

= dZ2 + dr2 +,r2 d02 .
For a

non-collapsed star with radius R, the outer solution z(r) = V8M(r - 2M), for

r > R > 2M, is asymptotically flat and matches exactly the non-singular inner

solution z (r) = V8M(r) (,r - 2M(r)) for 0 < r < R (figure 13). For a black hole,
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the embedding is defined only for r > 2M. The corresponding surface is the

Flamm paraboloid z(r) = Such an asymptotically flat surface

exhibits two sheets separated by the "Schwarzschild throat" of radius 2M
.
The

two sheets can be either considered as two different asymptotically flat "parallel"
universes (whatever the physical meaning of such a statement may be) in which a

black hole in the upper sheet is connected to a time-reversed "white hole" in the

lower sheet (figure 14), or as a single asymptotically flat space-time containing a

pair of black/white holes connected by a so-called "wormhole" (figure 15). The

freedom comes from the topological indeterminacy of general relativity, which

allows us to identify some asymptotically distant points of space-time without

changing the metric.

BLACK HOLE

UR"
41VERSE

star

Schwarzschild
throat

horizon
ANOTHER"
UNIVERSE

Figs. 13 and 14 Embedding of a non-collapsed spherical star and of Schwarzschild

space-time.

Fig. 15 A wormhole in space-time.

WHITE HOLE
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However, the embedding technique does not give access to the regions of

space-time inside the event horizon.

Kruskal diagram - To explore inner space-time we use the maximal analytical
extension of the Schwarzschild metric. This is achieved by means of a coordinate
transformation discovered by Kruskal:

U2 V2
r

- 1)er/2M
2M

coth t < 2M m
I for r = 2M (15)

tanh t > 2MT-M

The metric then becomes

d.52 = 32M3e-r/2M (-dV2 + du2) + r2dfl2. (16)
r

In the (v, u) plane, the Kruskal space-time divides into two outer asymptoti-
cally flat regions and two regions inside the event horizon bounded by the future
and the past singularities. Only the unshaded region is covered by Schwarzschild
coordinates. The black region does not belong to space-time. In the Kruskal di-

agram (figure 16), light rays always travel at 45', lines of constant distance r

are hyperbolas, lines of constant time t pass through the origin. The interior of
the future event horizon is the black hole, the interior of the past event horizon
is the white hole. However it is clear that the wormhole cannot be crossed by
timelike trajectories: no trajectory can pass from one exterior universe to the
other one without encountering the r - 0 singularity.

Moreover, the Kruskal extension is a mathematical idealization of a spherical
black hole since it implicitly assumes that the black hole exists forever. However
in the physical universe, a black hole is not inscribed in the initial conditions of
the universe, it may form only from gravitational collapse. In such a case, one

gets a "truncated" Kruskal diagram (figure 17), which indicates that only the
future event horizon and the future singularity occur in a single asymptotically
flat space-time. Such a situation offers no perspective to space-time travelers!

Penrose-Carter diagrams - The Penrose-Carter diagrams use conformal
transformations of coordinates such that g,,a -+ 02ga3which put spacelike and
timelike infinities at finite distance, and thus allow to depict the full space-time
into square boxes. The Penrose-Carter diagram for the Schwarzschild black hole
does not bring much more information than the Kruskal one, but it turns out to

be the best available tool to reveal the complex structure of a rotating black hole.

Figure 18 shows the "many-fingered" universe of a Kerr black hole; it suggests
that some timelike trajectories (B, C) may well cross the outer and inner event

horizons and pass from an asymptotically flat external universe to another one
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Fig. 16 Exploring a spherical black hole using Kruskal's map. (u-axis - , v-axis T)

without encountering a singularity. This is due to the fact that the singularity
S is timelike rather than spacelike. Also, the shape of the singularity is a ring
within the equatorial plane, so that some trajectories (A) can pass through the

ring and reach an asymptotically flat space-time inside the black hole where

gravity is repulsive. However, the analysis of perturbations of such idealized

Kerr space-times suggests that they are unstable and therefore not physically
plausible. Nevertheless the study of the internal structure of black holes is a

fascinating subject which is more deeply investigated by Werner Israel's lecture

in Chap. 18.

3 Astrophysics of Black Holes

The fact that General Relativity does predict the existence of black holes and

that General Relativity is a reliable theory of gravitation does not necessarily
prove the existence of black holes, because General Relativity does not describe

the astrophysical processes by which a black hole may form.

Thus, the astronomical credibility of black holes crucially depends on a good
understanding of gravitational collapse of stars and stellar clusters.

In this section we first examine briefly the astrophysical conditions for black

hole formation, next we describe the astronomical sites where black hole candi-

dates at various mass scales lurk.
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Fig. 17 Truncated Kruskal map representing the collapse of a star into a black hole.

3.1 Formation of stellar black holes

The basic process of stellar evolution is gravitational contraction at a rate con-

trolled by luminosity. The key parameter is the initial mass. According to its

value, stars evolve through various stages of nuclear burning and finish their

lives as white dwarfs, neutron stars or black holes. Any stellar remnant (cold
equilibrium configuration) more massive than about 3M(D cannot be supported
by degeneracy pressure and is doomed to collapse to a black hole.

The figure 19 shows the stellar paths in a density-mass diagram according to

the most recent observational and theoretical data. Below 8MG stars produce
white dwarfs, between 8 and 45M(D they produce neutron stars; black holes are

formed only when the initial mass exceeds 45MG (we note on the diagram that

stars with initial mass between 20 and 40MO suffer important mass losses at

the stage of helium burning). Taking account of the stellar initial mass function,
one concludes that approximately 1 supernova over 100 generates a black hole

rather than a neutron star. Another possibility to form a stellar mass black hole

is accretion of gas onto a neutron star in a binary system until when the mass

of the neutron star reaches the maximum allowable value; then, gravitational
collapse occurs and a low mass black hole forms. Taking into account these

various processes, a typical galaxy like the Milky Way should harbour 107 - 108
stellar black holes.
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Fig. 18 Penrose map of a rotating black hole. EH denotes the outer and IH the inner

event horizon.

3.2 Formation of giant black holes

A massive black hole can form by continuous growth of a "seed" stellar mass

black hole, by gravitational collapse of a large star cluster or by collapse of a large
density fluctuation in the early universe (see next subsection). A well nourished

stellar mass black hole can grow to a supermassive black hole in less than a

Hubble time. Such a process requests large amounts of matter (gas and stars)
in the neighborhood, a situation than can be expected in some galactic nuclei.

A dense cluster of ordinary stars, such that the velocity dispersion v, < v,,,
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Fig. 19 The density-mass diagram of astronomical objects.

where v,, ;zz 600 km/s is the typical escape velocity for main sequence stars,
first evolves through individual stellar burning; supernovae explosions lead to

the formation of compact remnants, e.g. neutron stars and stellar mass black

holes. A cluster of compact stars becomes relativistically unstable at sufficiently
high central gravitational redshift 1 + z, = (1 - 2M) -1/2 > 1.5 (Zeldovich
and Podurets, 1965). Numerical simulations (e.g. Shapiro and Teukolsky, 1987,
BisnovatyiwKogan, 1988) confirm this scenario. Starting with ';Z " 107 -2. 108 COM_

pact stars of 1 - IOMD within a cluster radius r < 0.01 - 0.1 pc and velocity
dispersion 800 - 2000 km/s, the evolution proceeds through three stages:

- secular core collapse via the gravothermal catastrophe (long timescale)

- short epoch dominated by compact star collisions and coalescences, leading
to the formation of black holes with mass M ;ze, 90MD

- relativistic instability leading to a massive black hole surrounded by a halo

of stars.
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3.3 Formation of mini-black holes

Zeldovich in 1967 and Hawking in 1971 pointed out that it was in principle
possible to create a black hole with small mass (e.g. below the Chandrasekhar

limit) by applying a sufficiently strong external pressure. Such conditions could

have been achieved only in the very early universe. Gravitational forces may

locally halt the cosmic expansion of a clump of matter and reverse it into collapse
if the self-gravitational potential energy of the clump exceeds the internal energy:

GM2
Gp2R5 > pR3 (17)

R

During the radiation era, p ,:-- pC2, so the condition (17) is equivalent to GMIc2 >

R, where R is the size of the fluctuation. Then a primordial black hole of mass M

forms. Due to the relation between density and time Gp ;zz t-2 in an Einstein-De

Sitter model of the early universe, the maximum mass of a collapsing fluctu-

ation is related to the cosmic time by M(grams)   1038t (seconds). Thus at

Planck time t   10-43S, only mini-black holes may form with the Planck mass

  _ 10-5 g, at time t ;z: 10-4 s, black holes may form with ;z:,, 1MO, at the time of

nucleosynthesis t 100 s supermassive black holes with 107M0 may form. The

observational status of primordial black holes is poor and unclear. On one hand,
mini-black holes with mass < 1015 g could be detected by a burst of - -radiation
corresponding to the last stage of quantum evaporation in less than a Hubble

time. Nothing similar having been observed, this puts severe upper limits on

the actual average density of mini-black holes. On the other hand, the fact that

most galactic nuclei seem to harbour massive black holes (see below) and that

supermassive black holes are suspected to feed quasars at very high redshift,
favour the hypothesis of the rapid formation of primordial massive black holes

in the early universe.

3.4 Black Hole candidates in binary X-ray sources

Light cannot escape (classical) black holes but one can hope to detect them in-

directly by observing the electromagnetic energy released during accretion pro-

cesses.

Accretion of gas onto a compact star (neutron star or black hole in a binary
system) releases energy in the X-ray domain, see S. Chakrabarti's lecture in this

volume for the details. Search for stellar mass black holes thus consists in locating
rapidly variable binary X-ray sources which are neither periodic (the correspond-
ing X-ray - nlsars are interpreted as rotating neutron stars) nor recurrent (the
corresponding X-ray bursters are interpreted as thermonuclear explosions on a

neutron star's hard surface). In spectroscopic binaries, the Doppler curve of the

spectrum of the primary (visible) star provides the orbital period P of the binary
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and the maximum velocity v,, of the primary projected along the line-of-sight.
Kepler's laws gives the following mass function which relates observed quantities
to unknown masses:

PV3 (M, sin i)3
27G (M* + MC)2' (18)

where M, and M* are the masses of the compact star and of the optical primary,
i the orbital inclination angle. A crucial fact is that Mc cannot be less than the

value of the mass function (the limit would correspond to a zero-mass companion
viewed at maximum inclination angle). Therefore the best black hole candidates

are obtained when the observed mass function exceeds 3MO - since, according
to the theory, a neutron star more massive than this limit is unstable and will

collapse to form a black hole. Otherwise, additional information is necessary
to deduce M,: the spectral type of the primary gives approximately M, the

presence or absence of X-ray eclipses gives bounds to sin i. Hence Mc is obtained
within some error bar. Black hole candidates are retained only when the lower

limit exceeds 3M(D. At present day, about ten binary X-ray sources provide
good black hole candidates. They can be divided into two families: the high-
mass X-ray binaries (HMXB), where the companion star is of high mass, and
the low-mass X-ray binaries (LMXB) where the companion is typically below a

solar mass. The latter are also called "X-ray transients" because they flare up
to high luminosities. Their mass properties are summarized in the table 1 below.

Table 1 Stellar mass black hole candidates

mass function M,,IM(D M.IM(D
HMXB

_

Cygnus X-1 0.25 11-21 24-42

LMC X-3 2.3 5.6 -7.8 20

LMC X-1 0.14 > 4 4-8

LMXB (X-ray transients)

V 404 Cyg 6.07 10-15 Pz 0. 6

A 0620-00 2.91 5-17 0.2-0.7

GS 1124-68 (Nova Musc) 3.01 4.2-6.5 0.5-0.8

GS 2000+25 (Nova Vul 88) 5.01 6-14 0. 7

GRO J 1655-40 3.24 4.5 -6.5 1.2

H 1705-25 (Nova Oph 77) 4.65 5-9 0.4

J 04224+32 1.21 6-14 0.3-0.6

Other galactic X-ray sources are suspected to be black holes on spectroscopic
or other grounds, see Chakrabarti's lectures in this volume for developments. For

instance, some people argue that gamma-ray emission (above 100 keV) emitted
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from the inner edge of the accretion disc would attest the presence of a black hole
rather than a neutron star, because the high-energy radiation is scattered back by
the neutron star's hard surface and cools down the inner disc. If this is true, then

many "gamma-ray novae" in which no measurement of mass can be done (due to

the absence of optical counterpart or other limitations) are also good black hole
candidates. This is specially the case for Nova Aquila 1992 and 1 E 17407-2942,
two galactic sources which also exhibit radio jets. Such "microquasars" involving
both accretion and ejection of matter provide an interesting link between high
energy phenomena at the stellar and galactic scales.

3.5 Evidence for massive black holes in galactic nuclei

After the original speculations of Michell and Laplace, the idea of giant black
holes was reintroduced in the 1960's to explain the large amounts of energy
released by active galactic nuclei (AGNs). This generic term covers a large family
of galaxies including quasars, radiogalaxies, Seyfert galaxies, blazars and so on,
for the classification see W. Collmar's and V. Sch6nfelder's lecture in this volume.
The basic process is accretion of gas onto a massive black hole. The maximum

luminosity for a source of mass M, called the Eddington luminosity, is obtained

by balance between gravitational attraction and radiation pressure repulsion
acting on a given element of gas. It is given by

L -,, 1039
M

W
108MO

(19)

The observed luminosities of AGNs range from 1037 _ 1041 W, where the

higher values apply to the most powerful quasars. Then the corresponding masses
range from 106 _ 1010MG).

Due to constant improvements of observational techniques, it turned out in

the 1990's that most of the galactic nuclei (active or not) harbour large mass

concentrations. Today the detection of such masses is one of the major goals of

extragalactic astronomy. The most convincing method of detection consists in the

dynamical analysis of surrounding matter: gas or stars near the invisible central

mass have large dispersion velocities, which can be measured by spectroscopy.
It is now likely that giant black holes lurk in almost all galactic nuclei, the

energy output being governed by the available amounts of gaseous fuel. The

best candidates are summarized in Table 2.

For instance, our Galactic Centre is observed in radio, infrared, X-ray and

gamma-ray wavelengths (other wavelengths are absorbed by dust clouds of the

galactic disc). A unusual radiosource has long been observed at the dynamical
centre, which can be interpreted as low-level accretion onto a moderately massive

black hole. However, a definite proof is not yet reached because gas motions are

hard to interpret. Recently Eckart and Genzel (1996) obtained a full three-

dimensional map of the stellar velocities within the central 0.1 pc of our Galaxy.
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The values and distribution of stellar velocities are convincingly consistent with

the hypothesis of a 2.5 x 101MG black hole.

The nucleus of the giant elliptical M87 in the nearby Virgo cluster has also

a long story as a supermassive black hole candidate. Several independent ob-

servations are consistent with a I - 3 x 109Mo black hole accreting in a slow,
inefficient mode. A disc of gas is orbiting in a plane perpendicular to a spectac-
ular jet; recent spectroscopic observations of the Hubble Space Telescope show

redshifted and blueshifted components of the disc, which can be interpreted by
Doppler effect as parts of the disc on each side of the hole are receding and

approaching from us.

The spiral galaxy NGC 4258 (M 106) is by far the best massive black hole

candidate. Gas motions near the centre has been precisely mapped with the 1.3

cm, maser emission line of H20. The velocities are measured with accuracy of 1

km/s. Their spatial distribution reveals a disc with rotational velocities following
an exact Kepler's law around a massive compact object. Also the inner edge of

the disc, orbiting at 1080 km/s, cannot comprise a stable stellar cluster with the

inferred mass of 3.6 x 10'Mo.

Table 2 Massive black hole candidates

dynamics host galaxy galaxy type MhIMO
maser M 106 barred 4 x 101

gas M 87 elliptical 3 x 109

gas M 84 elliptical 3 x 108

gas NGC 4261 elliptical 5 x 108
stars M 31 spiral 3-10 X 107
stars M 32 elliptical 3 x 106
stars M 104 (barred?) spiral 5- 10 X 108
stars NGC 3115 lenticular 7-20 x 108
stars NGC 3377 elliptical 8 x 107
stars NGC 3379 elliptical 5 X 107
stars NGC 4486B elliptical 5 x 108
stars Milky Way spiral 2.5 x 10'6

The black hole in our galaxy and the massive black holes suspected in nearby
oirdinary galaxies would be small scale versions of the cataclysmic phenomena
occurring in AGNs. But AGNs are too far away to offer a spectral resolution good
enough for dynamical measurements. Indeed, estimates of luminosities of AGNs
and theoretical arguments involving the efficiency of energy release in strong
gravitational fields invariably suggest that central dark masses are comprised
between 107 _ 109 MG). Variability of the flux on short timescales also indicates
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that the emitting region has a small size; many AGNs exhibit large luminosity
fluctuations over timescales as short as one hour, which indicate that the emitting
region is smaller than one light-hour. Such large masses in such small volumes

cannot be explained by star clusters, so that accreting massive black holes remain

the only plausible explanation.

3.6 Stellar disruption

The accretion of gas at rate dMIdt and typical efficiency E ;  0.1 produces a

luminosity

L   1039
6 dMIdt

W (20)
0.1 1MO/year

By comparing the luminosity of the accretion model with the observed lumi-

nosities in AGNs, we conclude that the gas accretion rate must lie in the range
10-2 _ 102 Me/year. One is thus led to the question about the various gas pro-
duction mechanisms able to fuel a giant black hole. An efficient process is mass

loss from stars passing near the hole. Current models of galactic nuclei involve a

massive black hole surrounded by a dense large cloud of stars. Diffusion of orbits

makes some stars to penetrate deeply within the gravitational potential of the

black hole along eccentric orbits. Disruption of stars can occur either by tidal

forces or by high-velocity interstellar collisions (figure 20). The collision radius

R,,11 P  7 x1018 -M-cm for a solar-type star is the distance within which the10gMID
free-fall velocity of stars becomes greater than the escape velocity at the star's

surface v,, (typically 500 km/s for ordinary stars); if two stars collide inside R,,11
they will be partially or totally disrupted.

1013 ( M )1/3CMAlso stars penetrating the critical tidal radius RT ;-, 6 x 108 Mo
for solar-type stars will be ultimately disrupted, about 50 per cent of the released
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gas will remain bound to the black hole. In some sense, the tidal encounter of a

star with a black hole can be considered as a collision of the star with itself
...

In the collision process the factor 3 = v,,I/v,, plays a role analogous to the

penetration factor 3 = RTIRp in the tidal case (where Rp is the periastron
distance). As soon as 3 > 1 the stars are disrupted, and when 0 > 5 the stars

are strongly compressed during the encounter. Thus, in both cases, 0 appears as

a crushing factor, whose magnitude dictates the degree of maximal compression
and heating of the star.

The first modelisation of the tidal disruption of stars by a big black hole was

done in the 1980's by myself and collaborators (see Luminet and Carter, 1986
and references therein). We have discovered that a star deeply plunging in the
tidal radius without crossing the event horizon is squeezed by huge tidal forces
and compressed into a short-lived, ultra-hot "pancake" configuration. Figure 21

shows schematically the progressive deformation of the star (the size of the star

has been considerably over-emphasized for clarity). The left diagram represents
the deformation of the star in its orbital plane (seen from above), the right one

shows the deformation in the perpendicular direction. From a to d the tidal forces
are weak and the star remains practically spherical. At e the star penetrates the
tidal limit. It becomes cigar-shaped. From e to g a "mangle" effect due to tidal
forces becomes increasingly important and the star is flattened in its orbital

plane to the shape of a curved "pancake". The star rebounds, and as it leaves
the tidal radius, it starts to expand, becoming more cigar-shaped again. A little
further along its orbit the star eventually breaks up into fragments.

If the star chances to penetrate deeply (say with 0 > 10), its central tem-

perature increases to a billion degrees in a tenth of a second. The thermonuclear
chain reactions are considerably enhanced. During this brief period of heating,
elements like helium, nitrogen and oxygen are instantaneously transformed into
heavier ones by rapid proton or alpha-captures. A thermonuclear explosion takes

place in the stellar pancake, resulting in a kind of "accidental supernova". The

consequences of such an explosion are far reaching. About 50 per cent of the
stellar debris is blown away from the black hole at high velocity (propelled by
thermonuclear energy release), as a hot cloud able of carrying away any other
clouds it might collide with. The rest of the debris falls rapidly towards the hole,
producing a burst of radiation. Like supernovae, the stellar pancakes are also
crucibles in which heavy elements are produced and then scattered throughout
the galaxy. Thus, observation of high-velocity clouds and enrichment of the in-

terstellar medium by specific isotopes in the vicinity of galactic nuclei would
constitute an observational signature of the presence of big black holes.

Explosive or not, the tidal disruption process would induce a burst of lu-

minosity in the host galactic nucleus on a timescale of a few months (the time

required for the debris to be digested) -
To describe the evolution of the star we

developed a simplified "affine model" in which we assumed that the layers of
constant density keep an ellipsoidal form. Many astrophysicists were skeptical
about the predictions of the model until when full hydrodynamical calculations
were performed all around the world, using 3D Smooth Particle Hydrodynami-



1. Black Holes: A General Introduction 31

j break-up

tidal radius
Exi h.

........... cigar

9 9 pancake
I Black ;V,

hole

f f0
i

eEntry
e

c gar

c
b

tidal radiusd

t a sphere

Fig. 21 The disruption of a star by tidal forces of a black hole.

cal codes (Laguna and Miller, 1993, Khlokov, Novikov and Pethick, 1993, Frolov

et al., 1994) or spectral methods (Marck et al., 1997). The main features and

quantitative predictions of the affine star model were confirmed, even if shock

waves may decrease a little bit the maximum pancake density.
The nucleus of the elliptical galaxy NGC 4552 has increased its ultra-violet

luminosity up to 101LO between 1991 and 1993 (Renzini et al, 1993). The

timescale was consistent with a tidal disruption process, however the luminosity
was ;z: 10' lower than expected, suggesting only a partial disruption of the star.

4 A Journey Into a Black Hole

Imagine a black hole surrounded by a bright disc (Figure 22). The system is

observed from a great distance at an angle of 10' above the plane of the disc.

The light rays are received on a photographic plate (rather a bolometer in or-

der to capture all wavelengths). Because of the curvature of space-time in the

neighborhood of the black hole, the image of the system is very different from

the ellipses which would be observed if an ordinary celestial body (like the planet
Saturn) replaced the black hole. The light emitted from the upper side of the

disc forms a direct image and is considerably distorted, so that it is completely
visible. There is no hidden part. The lower side of the disc is also visible as an

indirect image, caused by highly curved light rays.
The first computer images of the appearance of a black hole surrounded by

an accretion disc were obtained by myself (Luminet, 1978). More sophisticated
calculations were performed by Marck (1993) in Schwarzschild and Kerr space-
times. A realistic image, e.g. taking account of the space-time curvature, of the
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Fig. 22 Optical distortions near a black hole.

blue- and redshift effects, of the physical properties of the disc and so on, can

be precisely calculated at any point of space-time - including inside the event

horizon. A movie showing the distortions observed along any timelike trajectory
around a black hole was produced (Delesalle, Lachi6ze-Rey and Luminet, 1993).
The figure 23 is a snapshot taken along a parabolic plunging trajectory. During
such a "thought journey" the vision of the third butterfly becomes accessible, all

external spectators can admire the fantastic landscape generated by the black

hole.

For a long time considered by astronomers as a mere theoretical specula-
tion, black holes are now widely accepted as the basic explanation for X-ray
massive binaries and galactic nuclei. Allowing for the elaboration of the most

likely models, black holes also respond to the principle of simplicity, according
to which among equally plausible models, the model involving the least num-

ber of hypotheses must be preferred. However, for such a wide acceptance to be

settled down, the basic picture of a black hole had to be drastically changed.
The conjunction of theoretical and observational investigations allowed for such

a metamorphosis of the black hole image, passing from the primeval image of a

naked black hole perfectly passive and invisible, to the more sophisticated im-

age of a thermodynamical engine well-fed in gas and stars, which turns out to

be the key of the most luminous phenomena in the universe. Then the modern

astronomer won over to such a duality between light and darkness may adopt
the verse of the french poet L6on Dierx: "Il est des gouffres noirs dont les bords

sont charmants".
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Evidence for Massive Black Holes in the Nuclei
of Active Galaxies from Gamma-Ray Observations

Werner Collmar and Volker Sch6nfelder

Max-Planck-Institut ffir Extraterrestrische Physik, Postfach 16 03, D-85748 Garching,
Germany

Abstract. According to our present knowledge, Active Galactic Nuclei (AGNs) consist
of massive black holes which accrete matter from their environments. By this process
the gravitational energy is converted into electromagnetic radiation. Before the launch
of the Compton Gamma-Ray Observatory (CGRO) only four AGNs had been reported
to emit detectable gamma-rays. Now, after roughly six years in orbit, the different
CGRO experiments have discovered about 90 AGNs in the energy range between 50
keV and 20 GeV. Accordingly, CGRO finally opened the field of extragalactic gamma-
ray astronomy. Two main conclusions can be drawn from the CGRO-results: i) Seyfert
galaxies are haxd X-ray sources rather than gamma-ray sources. They emit thermal
radiation which cuts off at energies above a few hundreds of keV (-200 keV). ii) Radio-
loud quasars and BL Lac-objects - so called blazars - however, can be strong gamma-
ray emitters up to energies of at least several GeV. They show a highly variable non-

thermal emission component. The assumption of isotropic emission together with the
observed vaxiability would lead to a high radiation density in a small emission region.
At least for some sources, the derived compactness is in conflict with the assumption of

isotropy and therefore relativistic beaming of the gamma emission is strongly suggested.
The observed broad band vFv-spectra show a maximum at gamma-rays. However,
taking into account the relativistic beaming, the gamma-ray energy output is a factor
Of Up to 104 smaller than suggested by the observed intensity spectra.

We discuss these CGRO results in the context of the gamma-ray emission processes,
AGN emission models, and finally collect the evidence for massive black holes in the
center of active galaxies.

1 What Are 'Active' Galaxies in Comparison to 'Normal'
Galaxies

The observable universe consists of billions of galaxies, many of which containing
100 billion stars or more, like our 'Milky Way', for example. On a morphological
basis these galaxies are grouped into three main categories: spirals, ellipticals,
and irregulars.

In 1943, the US astronomer Carl Seyfert noticed a distinct class of galaxies
with stellar appearing cores and broad nuclear emission lines. Galaxies, showing
these two characteristica, were subsequently named 'Seyfert' galaxies and mark

today a sub-class of the so-called 'Active Galaxies'. Active galaxies comprise
names like 'quasars' (quasi-stellar radio sources), 'QSOs' (quasi-stellar objects),
'Markarian galaxies', 'radio galaxies', and 'blazars' for example. The names of
the different sub-classes of active galaxies developed historically according to the

F.W. Hehl, C. Kiefer, R.J.K. Metzler (Eds.): LNP 514, pp. 37 - 59, 1998
© Springer-Verlag Berlin Heidelberg 1998
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Fig. I Comparison of optical spectra from a 'normal' (spiral) galaxy above and an

'active' (Seyfert) galaxy below. The spectrum of the spiral galaxy shows mainly ab-

sorption lines due to stars, while the spectrum of the Seyfert galaxy is dominated by
strong and broad emission lines. This figure is from Robson (1997).

name of the reporting astronomer (e.g. 'Seyferts', 'Markarians'), morphological
characteristica (QSOs), or from other properties.

There are distinct observational differences between ordinary or 'normal'

galaxies and 'active' galaxies. In contrast to the images of 'normal' galaxies,
which are basically an assembly of stars, the images of active galaxies show

bright nuclei. Their optical spectra typically show broadened emission lines in-

stead of absorption lines (Fig. 1). Their overall spectra show luminosity maxima
in IR, UV, X- or even -y-rays, and are often dominated by non-thermal emission,
while normal galaxies radiate most of their energy in the optical band simply
being the sum of the starlight. Another major difference between 'normal' and

active' galaxies is the variability. While normal galaxies always look the same

- maybe a supernova is brightening occasionally for a few months - the emis-

sion of active galaxies changes significantly on short time scales (Fig. 2) down
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Fig. 2 Time history of the quasar 3C 279 in the optical band from 1930 to 1994.

Variations up to -7 magnitudines (a factor of -630) are observed. The 'activity' of

the source is obvious. The figure is from Hartman et al. (1996).

to days or even below, which - in our mind - gave rise to the term 'active'.

This short-term variability points to small sizes of the emission regions which

are consistent with the bright nuclei. In the specific case of quasars or QSOs the

nucleus overshines the rest of the galaxy by far resulting in a star-like image. On
the basis of light-travel arguments, the emission region radius is estimated to

r < cAt/(l + z) , (1)

with  At the observed time variability, z the redshift of the source, and c the

speed of light. Some active galaxies show jets like the famous quasar 3C 273 for

example.

2 A Unification Scheme for AGN

Roughly 3% of all galaxies are classified as being 'active'. Although there is

no overall agreement amongst astronomers about a precise definition of active

galaxies, one common criterium, is the generation of large luminosities in small

core regions. In many cases the active and bright core overshines the remaining
galaxy by far.

As described above there exist a large number of classes and sub-classes,
which developed historically and sometimes overlap in their parameters, and
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which are confusing physicists and even astrophysicists not working in AGN
research. For example, the most luminous Seyferts are brighter than the low-
luminous quasars. If such a Seyfert galaxy would be 'put' far out to cosmological
distances, only the bright core would remain visible, and, subsequently, it would
be classified as a QSO ('quasi-stellar object'). So, in a first step of unification, it

is suggested that some Seyferts are simply 'nearby quasars'.

Table I This table (from Urry and Padovani 1995) shows the simplified classification
of AGN according to the two parameters 'radio-loudness' and 'optical emission line

properties'. The main types of AGN are sorted into the table. The abbreviations have

the following meaning: NLRG, BLRG: narrow, broad line radio galaxies, SSRQ, FSRQ:
steep, flat spectrum radio quasars, FR 1, 11: Fanaroff-Riley Type 1,2 radio galaxies, and

BL Lac: BL Lacertae object. For a more detailed description of the different types see

e.g. Urry and Padovani (1995) or Robson (1997).

Radio Optical Emission Line properties
Loudness

Type 2 Type 1 Type 0

(Narrow Line) (Broad Line) (unusual)

radio-quiet Seyfert-2 Seyfert- 1

(85-90%) QSO ?

radio-loud NLRG BLRG Blazars ?

(10-15%) (FR 1, FR 11) (BL Lac, FSRQ)
SSRQ,FSRQ

,

decreasing jet angle to line of sight -4

Observationally, AGN are classified on the basis of three parameters: the

strength of their radio emission, the emission line properties in the optical and

UV range, and the luminosity. However, the question was asked, whether there

is some common underlying physics or physical structure involved. One of the
first steps towards unification concerned the difference between the two sub-

classes of Seyfert galaxies simply called 'Type 1' and 'Type 2'. While the 'Type
1' Seyferts show broad - (,Av>2000 km/s) and narrow emission lines (,Av<2000
km/s), the 'Type 2' sources show only narrow emission lines. A key observation

by Antonucci and Miller (1985) revealed weak broad lines in polarized light from
the Seyfert-2 galaxy NGC 1068. Since scattered light is polarized, this observa-

tion was interpreted that NGC 1068 also generates broad emission lines, which

however, are somehow hidden from direct observation. From such observational

facts a simplified classification scheme evolved recently which is shown in Table

1 Q31]). The different classes of AGN are ordered according to two parameters
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only: their 'optical emission line properties' and their 'radio loudness'.
With respect to their line properties, AGN are subdivided into so called

'Type-2' sources showing only narrow emission lines, 'Type-I' sources showing
also broad emission lines, and 'Type-O' sources showing an unusual behaviour,
e.g. weak or even absence of any lines. AGN are considered to be radio-loud if
the ratio of the radio flux at 5 GHz to the optical B-band ('blue') flux is larger
than 10 (f5GHzlfB >10) Q151). According to this definition roughly 10% to 15%
of all AGN are radio-loud.

The different main AGN types are sorted into this two-dimensional scheme

accordingly (Table 1). It is believed that the horizontal axis reflects an orien-
tation effect, namely the decreasing angle to the line of sight towards the jet
of an active galaxy (see Fig. 3). There is no commonly accepted interpretation
why some AGN are radio-loud and others not. Whether this has to do with the
host galaxy - radio-loud sources are mainly found in elliptical galaxies, while

radio-quiet ones in spirals - or with the spin of the putative central BH or

something else remains unclear to date. This question is currently one of the

major unresolved problems in AGN research.

Fig. 3 shows the 'standard model' for AGN, which explains the different

types as simply being an orientational effect. Despite the fact that many details
are not yet understood, the scenario - which is described in the following - is

commonly accepted because it explains the major observational facts reasonably
well and consistently. The central object is thought to be a supermassive Black
Hole (BH) with masses of the order of _106 to -10'0 Mo. The Schwarzschild ra-

dius (R, - 2GM H/C2) of an 108 Me BH is -3-108 km, which is approximately
2 Astronomical Units (AU) or -10' parsecs (pc). The BH is surrounded by
an accretion disc consisting of ionized material reaching out to several hundreds
of Schwarzschild radii. This very center of an active galaxy is surrounded by
an extended molecular torus with an inner diameter of -1.5 pc and an outer

diameter of the order of -30 pc. Within the molecular torus and near the cen-

ter of the active galaxy fast moving (v>20OOkm/s) gas clouds (dark spots in

Fig. 3) exist which are ionized by the accretion disk radiation and which emit
the observed broad emission lines. These fast moving clouds are located within
-2-20. 1016 cm and are marking the so called 'broad-line region' (BLR). F'urther
out such clouds (grey spots in Fig. 3) move slower (v<20OOkm/s) and therefore

give rise to the observed narrow emission lines. This so-called narrow-line region
(NLR) ranges roughly from 1018 CM to 1020 CM. In addition to these clouds a hot
electron corona (dark dots in Fig. 3) populates the inner region which can scat-

ter some continuum and broad line emission as was observed in NGC 1068 ([1]).
In a radio-loud AGN a strong jet of relativistic leptons emanates Perpendicular
to the plane of the accretion disc. The generation of such jets is still not un-

derstood, however it is believed that strong magnetic fields play a fundamental
role. Radio jets have been observed on scales from 1017 CM to _1024 CM, which
is significantly larger than the largest galaxies.

The 'unification-by-orientation' scenario assumes such a general structure for
all AGN. Depending on the spatial orientation with respect to us we observe the
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Fig. 3 The 'standaxd model' for radio-loud AGN. For an explanation see the text. The

plot is from Urry and Padovani (1995).
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different types of AGN. If we look towards the 'central engine' along the jet
axis (<10'), i.e. basically directly into the jet, we observe a blazar. A regular
quasar or a Seyfert-1 galaxy is observed if we look at an offset angle of the order

of 30', at which both the narrow- and broad-line region are visible. At larger
angular offsets the broad-line region will be hidden by this extended molecular

torus giving rise to Seyfert-2 galaxies. A typical radio galaxy, showing two strong
opposite jets, is observed at angles approximately perpendicular to the jet axis.

This scenario is very intriguing and is widely accepted among astronomers.

However, there are still several unresolved questions like 'Where are the radio-

quiet and narrow-line (Type 2) QSOs?', and 'What causes the difference between
radio-loud and radio-quiet AGN?'. In addition, this scenario neglects evolution,
which probably is another important parameter for active galaxies.

3 Gamma-ray Emission of AGN

The -y-ray domain of the electromagnetic spectrum is located at photon energies
above -500 keV, still containing the 511 keV electron-positron annihilation line.

Due to absorption in the earth atmosphere, 7-ray observations in the MeV to

GeV range have to be carried out from space. Currently this is mainly done by
the Compton Gamma-Ray Observatory (CGRO), which was launched on April
5, 1991 (Fig. 4). CGRO is a NASA satellite, with contributional experiments
from Europe, mainly Germany. CGRO carries four different experiments, which

in total cover an energy range from 20 keV to -30 GeV and which are supple-
mentary in energy range. Their main characteristica are given in Table 2.

Table 2 The four scientific instruments aboard CGRO

Instrument Energy Range Field-of-View

[MeV]
OSSE 0.05 - 10 3.8' x 11'

(Oriented Scintillation Spectroscopy Exp.)
COMPTEL 0.75 - 30 -1 sr

(Compton Telescope)
EGRET 20- 30000 -0.5 sr

(Energetic Gamma-Ray Telescope Exp.)
BATSE 0.02 - 10 all-sky
(Burst and Transient Source Exp.)

Before CGRO only four AGN had been reported to emit detectable 7-rays.
The radio galaxy Centaurus A ([2]) and the Seyfert galaxies NGC 4151 and

MCG-8-11-11 (Perotti et al. 1981a, 1981b) up to energies of -20 MeV. The

quasar 3C 273 was the fourth one, which was only detected at the high-energy
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Fig. 4 Schematic view of the Compton Gamma-ray Observatory. The four different

experiments are indicated. BATSE, in contrast to the others, is designed to be an

all-sky monitor with the prime goal to observe 7-ray bursts. Therefore it consists of

8 detectors, which are located at the edges of the spacecraft and are pointing to different

directions.

end above 50 MeV by the Cos-B satellite Q30]). In view of the improved sensi-

tivities of the CGRO instruments with respect to previous experiments, it was

expected prior to the launch that CGRO would detect several quasars, Seyfert,
and radio galaxies. In addition, there was the hope for new and unexpected
discoveries which is usually the case when improved instruments come into op-

eration.

3.1 Blazars

Because 3C 273 was a prime candidate for ^/-ray emission, shortly after launch

the CGRO was pointed towards this quasar. Indeed, a strong 7-ray signal was

immediately observed by the EGRET experiment. However, this signal was not

at the 'right' location. It was offset by -8' from the position of 3C 273, thereby
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Fig. 5 Comparison of COMPTEL (10-30 MeV) and EGRET (>100 MeV) significance
maps at the galactic anticenter. Three significant sources are seen by EGRET: the

previously known galactic pulsars Crab and Geminga, and the newly discovered -Y-ray
blazar PKS 0528+134. The absence of Geminga in the COMPTEL maps is due to

its hard spectrum, which causes it to fall below the COMPTEL detection threshold

despite its prominence in the EGRET data. This figure is from Hartman et al. (1997).

causing some confusion within the EGRET and satellite operations teams. After
the satellite pointing and the EGRET data analysis was confirmed to be cor-

rect, the strong 7-ray source was identified with the blazar-type quasar 3C 279.
3C 279, known to be a radio source and an optically violently variable quasar,
was the most 'dramatic' object inside the EGRET location error box. Further

observations of other sky regions often showed a fairly bright - -ray source in

the EGRET field-of-view and their error boxes always contained a blazar-type
AGN, supporting the identification of 3C 279. So, after some time of operation,
the conclusion that blazars can - at least occasionally - be strong emitters of

-y-ray radiation became firm. Blazars are radio-loud quasars or BL Lac objects,
which show a flat radio spectrum, strong and rapid variability in both optical and
radio bands, and strong optical polarization. In addition, many blazars show su-

perluminal motion of radio 'knots' resolved by very long baseline interferometry
(VLBI).

After 5 years of operation, roughly 70 blazars have been detected by EGRET
at energies above 100 MeV Q141). Eight of them are observed also at low-energy
-y-rays by COMPTEL Q61), and also eight by the OSSE experiment Q20]) mainly
at hard X-ray energies (-50 keV to -500 keV). Figure 5 shows simultaneous
COMPTEL and EGRET maps of the galactic anticenter region. The evidence
for the newly discovered -y-ray blazar PKS 0528+134 is obvious in both maps.

The - -ray fluxes are observed to be highly variable with variability time
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Fig. 6 Time history of fluxes, including flaring events, of 3C 279. For details see the

text. The figure is from Hartman et al. (1997).

scales, e.g. doubling of the flux, of years down to less than one day. In some

sources strong flux variations, up to a factor of 80, have been observed. A promi-
nent example, the long-term 7-ray light curve of 3C 279 as observed by EGRET
at energies above 100 MeV is shown in Figure 6. Short-term variability (-days)
is clearly seen in the insets, which resolve the two major -Y-ray flares observed

from this blazar.

The energy spectra measured by the different CGRO instruments are consis-

tent with power-law shapes. However, if they are combined a spectral turnover

at MeV-energies becomes evident (Fig. 7) for several blazars. This indicates that

the MeV-range is a spectral transition region for blazars (see also Figs. 8, 9).
Integrating the observed spectra and assuming isotropic emission of the distant

sources results in source luminosities of _1048 erg/s on average with a maximum

of -5. 104' erg/s for the -y-ray band above 1 MeV.

3.2 Seyfert - and Radio Galaxies

Seyfert galaxies, Type 1 as well as Type 2, have not fulfilled the expectations
about prominent 7-ray emission. It was found by the OSSE experiment (e.g.
[13]) that the spectra of Seyfert galaxies cut off at energies around -100 to

-200 keV showing the signature of a thermal spectrum (see Fig. 10). No Seyfert
galaxy has yet been detected by COMPTEL and EGRET.

Cen A, the closest active galaxy (-4 Mpc), is the only radio galaxy detected

so far at hard X-rays and -y-rays. Cen A is a peculiar object with a Seyfert-2 type
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Fig. 7 Simultaneous EGRET and COMPTEL spectrum of the blazar PKS 0528+134
for a -y-ray flare. The solid line represents the best-fitting 'broken' power-law function.
The spectral turnover at MeV-energies is evident. The figure is from Collmar et al.

(1997).

nucleus with strong optical extinction. Cen A was re-detected by COMPTEL
Q 9]) and probably also by EGRET Q22]). However, source confusion is not

completely ruled out in the case of the EGRET detection. Apart from Cen A no

other radio galaxy has yet been detected by the CGRO experiments.
Because Seyferts are not -y-ray emitters and Cen A is a single and peculiar

case we shall concentrate on the blazars for the rest of the paper.

4 Broad-band Properties of AGN

4.1 Gamma-Ray Production Processes

For the generation of -y-ray photons mainly non-thermal processes are responsi-
ble. Non-thermal means that the primary particles have a non-Maxwellian energy
distribution, which is usually considered to be a power-law shape. Thermal emis-

sion is only of minor importance for the 7-ray emission, because in astrophysical
environments the necessary plasma temperatures are only reached in exceptional
cases. There are several processes to generate y-ray photons (e.g. [27]). Here we

shall concentrate on the ones important for the -y-ray blazars.
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Synchrotron radiation is emitted when relativistic electrons interact with a

magnetic field. The moving electrons are accelerated by the Lorentz force and

radiate. The frequency of the synchrotron radiation v,

v, oc B - E2 (2)e,

is proportional to the magnetic field strength B, and the square of the electron

energy E,. For example, 10" eV electrons moving in a magnetic field of 10-4T
would generate -y-ray synchrotron photons of -1 MeV. An electron cloud with

a power-law distribution in energy will generate a power-law synchrotron spec-
trum. For a particle number spectrum of the form N(E) oc E-s and a synchrotron
photon number spectrum N(E) oc E` the simple relation a=(s+l)/2 between
the two power-law indices holds.

The inverse Compton process describes the interaction between a low-energy
photon and a high-energy electron. In this scattering process energy from the
electron to the photon is transferred and the photons are scattered to higher
energies according to the equation

vjc P E2 (3)e
* VO,

where vjc is the frequency of the inverse Compton photon, vo the frequency of
the soft photon, and Ee the energy of the electron. For example, a MeV ^ -ray
is generated by the interaction of a UV-photon (-10" Hz) with a 0.5 GeV elec-
tron. Like in the synchrotron process also in the IC-process a power-law shaped
electron distribution in energy generates a power-law shaped IC-spectrum with
the same simple relation between the spectral indices.

The pair-production process is important in regions of high photon densities.
This process describes the interaction of a high-energy 7-ray with another photon
or the field of an atomic nucleus. Schematically this can be written as

-y + 7 -+ e- + e+, 7 + nucleus -4 e- + e+
- (4)

Because of simultaneous energy and momentum conservation this conversion
cannot occur for a single -y-ray photon. In the case of photon-photon interaction
the following condition is valid:

El - E2  ! -2(mec2)2 (5)
(1 - cosa)'

with E1,2 the photon energies, m, the electron rest mass, c the speed of light,
and a the interaction angle between the photons. The inverse process

e- + e+ -+ y +,y (6)

is also possible. The 511-keV annihilation line has been observed from the in-

ner part of our galaxy proving that the pair-production process (generation of

positrons) occurs in real astrophysical environments.



2. Evidence for Massive Black Holes in the Nuclei of Active Galaxies 49

4.2 Multifrequency Observations of Garnma-Blazars

The CGRO observations of -y-ray blazars have shown that these sources can

be enormously luminous at y-ray energies and at the same time show short-

term variability. Simultaneous multiwavelength spectra, and especially multi-

wavelength monitoring have the potential of significantly increasing our knowl-

edge about the physics of these spectacular sources. In simultaneous spectra
from radio to -y-ray energies the luminosity of the objects in different bands

can be directly compared providing the possibility to identify the major emis-

sion components and processes. Especially valuable would be the multifrequency
monitoring because clues about correlated/uncorrelated time variability of dif-

ferent frequency bands are provided thereby revealing informations about their

connections and possibly about their emission sites. For example, the informa-

tion whether an X-ray or optical flare occurs simultaneously, earlier, later, or

is even absent during a -y-ray flare would be very constraining for the blazar

modelling. To proceed in this direction several multifrequency campaigns have

been organized around CGRO blazar observations. While the individual obser-

vations are easy to carry out, simultaneous observations of a particular source

are difficult to achieve. Because telescope time is precious, especially on space

experiments, severe pointing constraints exist, and scientific review panels have

to be convinced, only a few examples of such campaigns were carried out with

good coverage from the radio to the -y-ray band.
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1995).
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Fig. 9 Broad-band spectrum of PKS 0528+134 during a -y-ray high state (Collmar et

al. 1997).

To date, probably the best result was derived for the blazar 3C 273, which is

one of the best studied sources because it is the closest (z=0.158) blazar-type
quasar and is bright at all wavelength bands. Figure 8 Q16]) shows a quasi-
simultaneous multifrequency spectrum from radio to TeV -y-rays of 3C 273. The

ordinate represents the radiated power per natural logarithmic frequency in-

terval, so the energy release in the different wavelength bands can directly be

compared. First of all the spectrum shows that the high-energy emission (X- to

7-rays) is a significant part of the bolometric luminosity. The spectrum shows

(probably) four maxima indicating different emission components and processes,
which are interpreted as synchrotron emission from relativistic electrons in the

radio- and far-IR band, thermal emission from a dust torus in the IR and from

an accretion disk in the UV ('blue bump'), and inverse Compton radiation gen-
erated by relativistic electrons and soft photons at X- and gamma-rays.

Figure 9 ([7]) shows a non-simultaneous multifrequency spectrum of the bla-

zar PKS 0528+134, which with a redshift of z=2.06 ([12]) is a very far one. This

spectrum shows probably only two maxima. One in the radio/infrared region and
one in the -y-ray band, which clearly dominates the overall power output. The

spectrum is interpreted to be completely of non-thermal origin with only two

visible emission mechanisms at work: synchrotron emission from radio to optical
and inverse Compton emission from X-rays to 7-rays (e.g. [5]). The source is too

far away to show the thermal signatures from the dust torus and the accretion

disk.
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Fig. 10 Multiwavelength power spectra for the 'average' Seyfert galaxy, the bright
Seyferts NGC 4151 and IC 4329A, the BL Lac-object Markarian 421, and the blazar

3C 279. The figure clearly shows, that in contrast to both blazars, the high-energy
Seyfert spectra cut off around 100 keV, indicating thermal instead of a non-thermal

spectra. The figure is from Dermer and Gehrels (1995).

Figure 10 (from [9]) compares the high-energy luminosity spectra (assuming
isotropic emission) of different sources and source classes as function of their

rest frame energy. This figure allows to compare the amounts of radiated energy.
The different spectral behaviour of blazars and Seyferts becomes clearly obvious
from this diagram. It is obvious that the flat spectrum radio quasars (3C 279

as a bright example is shown) are by far the most luminous sources at these

energies. The BL Lac objects (e.g. Mkn 421) can also be 7-ray emitters, but

are usually less luminous than the quasars. However, in contrast to the quasars
three BL Lac objects have been detected at TeV 7-rays Q32]). Only the closest

Seyfert galaxies are observable at all (z<0.06). They are no 'Y-ray emitters be-

cause thermal spectra are observed which are assumed to originate from a hot

thermal plasma (kT-30 keV) and cut off at energies around -100 to -200 keV

(e.g. NGC 4151 and IC 2943A).
Correlated monitoring observations have shown that detectable -y-ray emis-

sion in blazars is generally present in coincidence with enhanced radio activity.
Sometimes correlated activity between 7-rays and other wavelength bands (e.g.
X-rays, optical) has been observed. However, since the emission of these sources
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is always variable, these activities cannot be correlated unambiguously.

5 Model-independent Conclusions from Observations

Several observational facts for AGN in general and -y-ray blazars in particular
have been summarized in the previous sections. In this section we want to apply
some basic physical concepts to derive conclusions on physical parameters of
active galaxies like their source of energy and their central masses.

The compactness of the central source is defined by the L/R-ratio, with L

being its luminosity and R its radius. For a normal galaxy like our 'Milky Way'
for example we derive an order of magnitude value of

L
-

1044 ,erg/s -2. 102, erg/s
labelcoll : sect4 - 1 (7)

R 15 kpc cm

However, for -y-ray blazars with luminosities of more than _1049 erg/s and
time variability of less than a day, a compactness value of

L 1049 erg/s erg/s
-
-

- = 1o34 (8)
R 1015 cm cm

is derived. The difference in compactness of more than 10 orders of magnitude
clearly indicates the different source natures.

The luminosity of a normal galaxy is roughly the sum of the luminosity of its
individual stars, and so is generated by nuclear fusion. In active galaxies there
is considerably more energy generated in much smaller volumes, even in a time-
variable fashion. Only gravitation can provide more energy than nuclear fusion.
If one assumes that a galaxy is a sphere of radius R, then for a given mass M
the energy release from fusion and gravitation is equal, if

3 GM2
= 0.007MC2, (9)

5 R

with G the gravitational constant. Therefore the radius R,,it, for equal energy
release is

R,,it = 43.
2GM

= 43. Rs. (10)C2

If R,,it is less than 43 Schwarzschild radii (Rs), energy generation by gravitation
is more efficient than by nuclear fusion. Let us assume that an active galaxy
would be powered by fusion, then its maximal compactness is

L
_

E
-

0.007MC2
-5. 1029erg/s (11)

R R,,it * Tiife 43 .

2GM
- Tlife cmcf-

for a lifetime (Tlif,) of 10' years. This result shows that fusion can at most

provide a compactness of 1030
CM ,

which is in conflict to observations of AGN.
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Even this value is only an upper limit because nuclear fusion provides thermal

energy which would have to be converted into non-thermal radiation energy as

observed in blazars. In addition, the observed short-term variability in blazars is

hard to understand if fusion is powering active galaxies. These arguments lead
to the conclusion that active galaxies are powered by gravitational energy of a

central massive object.
The AGN luminosity is generated by the release of gravitational energy of

the infalling matter in the gravitational field of a central massive object. The
mass of this object can be estimated by the physics of the accretion process. The
so-called Eddington limit describes the balance between the gravitational force
and the radiation pressure on the accreting material. If the radiation pressure
dominates, the accretion stops. For spherical accretion in the Thomson regime
the Eddington limit for the luminosity of a source as function of the central mass
is given by

LEdd ::-- 1.3 - 1038
M erg

(12)Mo s

If a source is radiating at its Eddington limit with a luminosity of 1046 erg/s, its

mass is of the order of 10' Mo. Therefore nuclei of active galaxies should have
masses in the range between 101 M(j) and 10" MD. If the source is radiating
below the Eddington limit, even larger masses would result.

The Eddington limit of the accretion process provides also clues on the build-

up times and the lifetimes of AGN. The released gravitational energy has to be
converted into the observed radiation energy:

2L = IE - ?haccc (13)

with L being the source luminosity, E the efficiency for converting gravitational
energy into radiation, rhacc the- mass accretion rate, and c the speed of light.
This equation has two consequences. Firstly, massive central objects of 108 M'D
cannot be build up quickly, because at high accretion rates the corresponding
strong outpushing radiation stops the accretion process. Secondly, the 'active'
lifetimes of AGN are limited. After the source has accreted all material from its

surroundings the activity stops. An r: of 0.1, which is the favoured number to

date, leads to build-up timescales of the order of 10' to 101 years and lifetimes of
the order of several times 108 years for typical accretion rates of -1 to -2 MO per
year. The powering of AGN by gravitational energy implies that bright active

galaxies could not exist very early in the universe (unless they are born very
massive) and cannot shine forever. Their brightness ultimately has to stop, when
they simply have 'eaten up' their host galaxies. Because they are not radiating
forever, many 'normal' galaxies might contain 'quiet' massive centers, which are

not 'fed' anymore.
Blazars emit polarized non-thermal radio emission: synchrotron radiation.

This fact proves the presence of magnetic fields and relativistic electrons as well
as an operating acceleration mechanism for the electrons. For large compactness,
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L > 103o erg/s the relativistic electrons cannot escape without interacting with'R - CM '

their own synchrotron photons by the inverse Compton process, i.e. boosting the

self-generated synchrotron photons to higher energies like X- and -Y-ray energies.
So high-energy emission is a natural consequence of high compactness and the

presence of relativistic electrons.

The large -y-ray luminosities of blazars together with the observed short-

term variability implies a highly compact emission region of the 7-ray radiation

as well. For photons above the threshold energy m,c
2
= 511 keV, the optical

depth for pair production of a source of size R is given by 7-,,,.y = n,,OpR, with ny
the photon density and up the cross section for pair production. A source will
be optically thick for pair production if (e.g. [24])

L,y
o,,R -

ae
.

Ly
= 2 -10-30 cm

s L-,
> 1,'r.,^, 47rR2Mec3 47rMeC3 R erg R -

(14)

where O'e is the Thomson cross section, L-, the -y-ray luminosity, and R the source

radius. For isotropic luminosities of 1048 erg/s and radii of 2.6-10" cm (I light
day), as observed in the -y-ray blazar 3C 279 for example, an optical depth for

pair production of

T-y-y = 770 (15)

is derived, which simply means that 7-rays cannot escape from such a source

region without generating electron/positron pairs. Nevertheless, these -y-rays are

observed! So, they have to come from an optically thin region. To resolve this

contradiction, beamed emission from a relativistic jet is considered instead of
central isotropic emission which was assumed in the calculations above. A jet
origin of the observed -y-rays is consistent with the facts that for many blazars

superluminal motion has been observed which is indicative for jets with a small
offset angle from our line-of-sight, and with the redshift distribution of these

sources, which shows that the source distance is not the critical parameter for
their detection because ^ -ray blazars are observed far out into the universe up
to redshifts of z=2.3 Q111). A relativistic jet origin of the 7-rays would imply
beamed emission. For beamed emission the angle between the photons is nearby
zero, therefore absorption by pair production is shifted to extremely high -y-ray
energies (see equ. 5). The beamed emission has another effect: the observed -y-ray
luminosity overestimates the internal generated luminosity by a factor of up to

_104 due to relativistic Doppler boosting of the emitted photons and the solid

angle effect. Therefore internally the optical depth for pair production is well
below 1, which is in accord with the observation of these 7-rays. A luminosity
reduction of up to 104 does not change the conclusion reached above on the issue
whether nuclear fusion or gravitational energy powers active galaxies, because

1) the given upper limit for compactness does not contain an efficiency factor
for conversion of thermal energy to non-thermal energy and 2) the observed
short-term variability in blazars is not conceivable to be powered by fusion.
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Fig. 11 Sketch (not scaled) of the inner part of an active galaxy. The 7-ray emission
is thought to be generated in the inner jet region, a few hundreds of Schwarzschild
radii apart from the central supermassive BH, where blobs of relativistic particles are

injected and accelerated in the jet. The figure is from v. Montigny (1997).

6 Models for the Gamma-ray Emission of Blazars

Since the CGRO discovery of -y-ray blazars, the origin of their 7-ray emission has
been widely discussed. The models have been developed within the framework
of the standard picture of radio-loud AGN (Fig. 3). Isotropical core emission
has to be excluded. The compactness of the emission region inferred from the
observed -y-ray fluxes and time variability would lead to severe absorption of
the -y-ray radiation by pair production. The favoured scenario to explain the
blazar radio-through-optical continua is that we are viewing nearly along the
axis of a relativistically outflowing plasma jet which has been ejected from an

acereting supermassive black hole. This broadband radiation is thought to be

produced by non-thermal electron synchrotron radiation in outflowing plasma
blobs. Figure 11 sketches the central part of an AGN, where according to models
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the -y-ray emission is generated. The high-energy blazar continuum emission

appears to constitute a distinct second component in the broadband spectral
energy distribution of blazars. Two classes of models have been proposed to

explain the blazar -y-radiation, where either leptons or hadrons are the primary
accelerated particles, which then radiate directly or through the production of

secondary particles which in turn emit photons.

6.1 Leptonic Models

In leptonic models, the -y-ray emission of blazars is produced by non-thermal
relativistic leptons (electrons and positrons) which scatter soft photons to y-ray

energies via the inverse-Compton (IC) process. These leptonic models come in

two flavors depending on the nature of the soft photons. The synchrotron-self
Compton models (SSC) assume the SSC process to be dominant. In this process

(e.g. [19, 4]) the relativistic electrons moving along the magnetized jet generate
synchrotron photons which are boosted by the same relativistic electron popula-
tion to - -ray energies via the IC-process. The IC-spectrum follows to first order
the shape of the synchrotron spectrum (just shifted to higher energies), which

explains the observed spectral turnover at MeV-energies in the ^Y-ray spectra.
The so-called external Compton scattering (ECS) models consider a different

origin for the soft photons. They assume the soft X-ray and UV-photons which

are radiated from the accretion disk directly into the jet (e.g. [8]) or scattered
into the jet by the broad line region clouds Q28]), to be the soft target photons
for the relativistic jet electrons. The ECS-models also can reproduce the broad-
band non-thermal spectral shape of the 7-ray blazars. These models explain the

spectral bending at MeV-energies by the so called incomplete Compton cooling
of the electrons. When a blob of relativistic electrons is injected into the jet, a

power-law shaped IC-spectrum is generated with low - and high-energy cutoffs

corresponding to the low - and high-energy cutoffs in the electron spectrum.
Because the high-energy photons cool first, the high-energy cutoff in the IC-

spectrum moves towards lower energies with time. The electron cooling by the

IC-process stops when the blob has moved out into regions where the photon
field becomes too thin to maintain this process. Integrating these spectra over

time and over many outmoving blobs generates the spectral turnover at MeV

energies observed by CGRO in time-averaged (days to weeks) -y-ray spectra ([8]).

6.2 Hadronic Models

Models have also been proposed in which accelerated hadronic particles (mainly
protons) carry the bulk of the energy (e.g. [17)). Because protons do not suffer
severe radiation losses, they can be accelerated up to energies of 1020 eV Q18]),
reaching the thresholds for photo-pion production, and the threshold for pion
production in inelastic proton-matter collisions ([3]). In these processes the pro-
tons transfer energy into photons, pairs, and neutrinos via pion production. The
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photons and pairs are reprocessed and initiate a cascade through inverse Comp-
ton and synchrotron processes to form a power-law photon spectrum in the end.
Electrons and positrons generated via charged pion decay will be accompanied
by energetic neutrino production. The detection of a strong neutrino flux from
blazar jets would definitively identify hadrons as the primary radiating particles.

7 Summary and Conclusions

Recent - -ray observations of AGN by CGRO have revealed a wealth of new

informations on the ^ -ray properties of AGN. Unexpectedly, blazar-type AGN
have been found to be occasionally strong emitters of -y-ray radiation. On the
other hand, Seyfert-type AGN have not fulfilled the expectations. They are found
to be strong emitters of hard X-ray radiation but no - -ray emitting sources.

These results fit well into the standard model of AGN and therefore provide
strong support for this model, which assumes a supermassive BH as the central

engine of active galaxies. The -y-ray blazars are sources in which a relativistic

jet is more or less directly pointed towards us. The - -ray luminosity produced
in the jet is relativistically boosted and therefore becomes visible for the CGRO

-y-ray telescopes.
Taking relativistic beaming into account, the internally generated 7-ray lu-

minosities are estimated to be of the order of 1044 to 1045 erg/s (roughly the
overall luminosity of our whole Milky Way ), which is switched on and off on

timescales of days. Only the release of gravitational energy in the field of a

massive central object, which is the most efficient process known in nature, can

provide the necessary energetics.
With isotropic luminosities up to 104' erg/s ([91) mass estimates via the Ed-

dington limit provide central masses of the order 10' to 10' M(D for Seyferts.
For blazars 108 to 1010 MG) have been estimated from -y-ray observations (e.g.
[20, 71). However, since the emission in blazars is probably beamed, the derived
blazar masses have to be taken with caution.

According to models explaining the - -ray emission of blazars, the ^ -ray ob-
servations probe the physics of the inner jet region. They assume the injection
of - -ray radiating blobs at distances of several hundreds Schwarzschild radii

(100< Rs <300) from the central engine. For a central mass of 108MG), 500 Rs
are -1.5-10"km, -1000 AU or -25 times the size of the solar system. If these
models are correct, only a BH is viable to be the central massive object. No
other object like a massive star cluster, for example, is comprehensible of being
stable in such a 'massive' environment.

The -y-ray blazars are found to be jet sources. The large energies involved
in the -y-ray emission ultimately provided by the even larger kinetic energy of
the AGN jet, which in turn is in the end supplied by the central engine, is -

according to our current understanding of physics - only conceivable to be due
to gravitational energy release in the vicinity of a massive BH.

In the line of these arguments, the recent CGRO -y-ray observations of AGN
provide clear evidence for massive BH in the nuclei of active galaxies.
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First Conclusive Evidence for a Massive Black Hole

in the Center of the Milky Way
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Abstract. In the last few years near-infrared imaging and spectroscopy at a high an-

gular resolution has made it possible to determine stellar velocities down to separations
of less than five light days from the compact radio source SgrA* that is located in the

constellation Sagittarius at the dynamic center of the Milky Way. These measurements

make a convincing case for the presence of a compact, central dark mass of 2.6x 106 so-

lar masses. Via simple physical considerations one can show that this dark mass cannot

consist of a stable cluster of stars, stellar remnants, substellar condensations or even a

degenerate gas of elementary particles. Energy equipartition requires that at least 105

out of the 2.6 x106 solar masses must be associated with the source SgrA* itself. This

mass is very likely enclosed within less than 8 light minutes which corresponds to 15

Schwarzschild radii of a million solar mass black hole. Accepting these arguments one

must conclude that a massive black hole is located at the core of the Milky Way.

1 Introduction

Do massive black holes exist at the centers of galaxies? The answer to this ques-

tion is of considerable importance for the understanding of 'active galactic nuclei'

(AGNs, quasars, e.g.) and their evolution in the early Universe. In the centers of

these objects luminosities of up to 1014 LO (one solar luminosity Le corresponds
to 4 x 1026 Watt) are produced within a light year or less. Highly collimated jets
of relativistic electrons and rapidly varying X- and -y-ray emission provide strong
but indirect evidence that AGNs cannot be powered by stars but by the conver-

sion of gravitational energy to radiation in accretion flows onto massive black

holes. For a direct proof of the 'black hole' paradigm it is necessary, however,
to determine the characteristic mass concentration and to show the existence

of an event horizon. Probably the most unambiguous method for carrying out

such a proof is the determination of the form of the gravitational potential from

the velocity field of stars and gas orbiting the hole candidate. Using this tech-

nique, ground-based and Hubble Space Telescope observations of the Doppler
shifts of spectral lines from gas and stars have shown indeed that many (and
perhaps most) nearby galaxies have massive dark mass concentrations in their

nuclei (e.g. Kormendy and Richstone 1995). With the exception of detailed ra-

dio Very-Long-Baseline-Interferometry (VLBI) observations of the galaxy NGC
4258 (Myoshi et al. 1995), none of these measurements have sufficiently high
resolution so far for proving that the central dark mass must be a black hole

and could not be, for instance, a dense compact cluster of stellar remnants. In

F.W. Hehl, C. Kiefer, R.J.K. Metzler (Eds.): LNP 514, pp. 60 - 68, 1998
© Springer-Verlag Berlin Heidelberg 1998
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contrast, the nucleus of the Milky Way (distance -8 kpc corresponding to 26100

light years) is a thousand times closer than the nearest AGN and one hundred

thousand times closer than the nearest quasar. Thus it is a unique laboratory
for testing the black hole paradigm. The Galactic Center, however, is hidden by
dust so that observations in the visible are impractical. With the advent of sen-

sitive infrared detectors, high resolution images and imaging spectrometers, it

has recently become possible to study the stellar velocity field at unprecedented
resolution and to provide the best evidence so far for a massive black hole at the

nucleus of a galaxy.

2 Initial evidence for a mass concentration

in the Galactic Center

The first indications for a central mass concentration in the Milky Way emerged
in the late seventies from spectroscopic observations of a mid-infrared fine struc-

ture line of Ne+ (Wollman et al. 1977, Lacy et al. 1979). These measurements

showed unusually large Doppler shifts (250 km/s) of ionized gas clouds in the

central parsec towards the maximum stellar density. As radio interferometric
observations led to the discovery of a compact, non-thermal radio source SgrA*
in the same region (Balick and Brown 1974), a plausible interpretation - in anal-

ogy to quasars - was that the large gas velocities indicate orbital motions in the

vicinity of a million solar mass black hole, coincident with SgrA* (Lynden-Bell
and Rees 1971, Lacy, Hollenbach and Townes 1982). Further infrared (and radio)
spectroscopic data, taken by various groups in the eighties, strengthened the gas
dynamic evidence for this central mass concentration (e.g. Serabyn and Lacy
1985, Genzel and Townes 1987) but were not considered as compelling by many
researchers in the field. In addition to gravitational forces, gas may be affected

by magnetic fields, radiation pressure, stellar winds and friction with other gas
components - all known to be present in the Galactic Center - thus making the

interpretation uncertain. Beginning in the late eighties, several groups began
measuring radial velocities of late type red giants and supergiants (e.g. Rieke
and Rieke 1988, Sellgren et al. 1990, Krabbe et al. 1995, Haller et al. 1996).
These measurements confirm and strengthen the evidence for the presence of a

1 to 3x 106 MG) central mass that cannot be accounted for solely by the stellar
cluster that is sampled by the near-infrared light.

3 Status as of 1997

In the last few years, it has become possible to measure the stellar velocity
field down to scales as small as 5 light days. Thus one is able to place decisive
constraints on the nature of the central mass concentration. This significant
progress was made possible on the one hand due to the discovery (by Forrest

et al. 1987, Allen et al. 1990 and Krabbe et al. 1991) of a ompact cluster of
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hot, luminous emission line stars (the so called 'Hel stars'). Apart from being
interesting in their own right (these stars must have formed in the last few

million years and now power the central parsec), they provide radial velocity
measurements to a scale of - 1" (0.04 pc). The other and - as it turns out -

most important development has been the first measurement of stellar proper

motions.

Figure I shows a 0.15" resolution, 2 ym image obtained with the MPE

SHARP camera on the 3.5 m New Technology Telescope (NTT) of the European
Southern Observatory (ESO). The excellent resolution, image quality and high
dynamic range of these images (the ratio between weakest and strongest sources

is -10-') are the result of combining 'speckle imaging' techniques (coadding
many short exposure images) with non-linear deconvolution techniques that re-

move the very substantial image artifacts in speckle imaging. These near-infrared

images show close to 103 stars in the central parsec, concentrated and centered

on or very near the compact radio source SgrA*. Using a novel field imaging
spectrometer, 3D, Genzel et al. (1996) have been able to determine radial ve-

locities for about 220 of these stars (see also Krabbe et al. 1995, Haller et al.

1996). Combining about 60 independent high resolution images between 1992

and 1997, Eckart and Genzel (1996, 1997 and unpublished) and Genzel et al.

(1997) derived (relative) proper motions for about 70 stars. Figure 2 (bottom)
shows two examples of the data obtained. In the upper section of Figure 2, the

derived proper motion vectors (without error bars) are plotted for a number of

stars on the high resolution image, assuming a Sun-Galactic Center distance of

8 kpc.
Of special interest is, naturally, the immediate vicinity of SgrA* (right upper
inset in Figure 2) where one finds a - 1" diameter concentration of faint stars.

Several of these stars in this so-called SgrA* cluster show proper motions in ex-

cess of 1000 km/s (stars further out have velocities of only a few hundred km/s),
the fastest one (Sl: v-1400 km/s) also being the closest one (- 0.13") to SgrA*.
This finding is exactly what one would expect if SgrA* were coincident with a

large compact mass. Because of the obvious importance of these large motions

and the substantial technical difficulties in deriving reliable proper motions of

faint stars in such a crowded environment, a confirmation of these results was

critical. This has now happened. A group from the University of California, Los

Angeles, has used the 10 m Keck telescope on Mauna Kea, Hawaii, and carried

out yet higher resolution 2 ym imagery of the central few arcseconds. Combining
data from three epochs, 1995, 1996 and 1997, this group fully confirms the very

high velocities of the SgrA* cluster stars (Ghez et al. 1997). It is also important
to ascertain that the observed positional changes indeed present orbital motions

in the central gravitational field and that the stars are actually located in the

Galactic Center. One can easily show that the positional changes cannot be

caused, for instance, by variability in a double or multiple stellar system or due

to a central gravitational lens (Eckart and Genzel 1996, 1997). More random

variability of unrelated stars can also cause apparent motions but the consis-

tency of the data within a given epoch and the continuous and steady positional
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Fig. 1 False color near-infreared (2 pm) image of the central 10" (0.39 pc) of the Galaxy,
obtained with the MPE SHARP camera in 1994 on the ESO NTT (Eckart et al.

1995), along with a selection of stellar spectra obtained with the MPE 3D spectrometer
(Genzel et al. 1996 and unpublished). The brightest stars are overexposed and are about

200 times brighter than the faintest stars. Stars with emission lines (from HeI and HI)
are luminous and massive blue supergiants. Stars with absorption bands (due to CO,
NaI and CaI) are cool red giants and supergiants. From these spectra radial velocities

are obtained for individual stars.
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Fig. 2 Stellar proper motions. The upper left inset shows the derived proper motions in

the central 6" as vectors (green), with lengths proportional to the absolute value of the
motions. The upper right inset shows the proper motion vectors (blue) in the immediate

vicinity of the compact radio source SgrA* (cross). The bottom two insets show the

relative positions, given in milli-arcseconds (mas) in right ascension and declination, of

two stars (marked on the upper images) as a function of time between 1992 and 1997.
The error bars in each epoch are the lo, errors of the mean of several independent
measurements in each epoch. The derived proper motions (linear fits to the data) are

for an assumed Sun-Galactic Center distance of 8 kpc.
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changes over up to eight epochs exclude such 'Christmas tree effects'.

Because of the rapid increase of stellar density toward the center, contamina-

tion by stars in the foreground or background are not very significant when one

considers stars outside the central parsec. Projection effects within the central

stellar cluster, however, have to be explicitly considered in the analysis (Genzel
et al. 1997).

4 Derived mass distribution

A first rough analysis shows that the projected velocity dispersions of a number

of stars in a given annulus of projected radius p increase with p-'I' between P

pc and p;zA.01 pc, as expected in the potential of a central point mass (a 'Kepler
law'). The location of the largest stellar velocities (the dynamic center), the

stellar density maximum and the position of SgrA* (now determined relative to

the stars to 30 milli-arcseconds, Menten et al. 1997) all agree to within 0.004 pc

(0.1", Ghez et al. 1997). Between 5" > p > 1" - where both radial and proper

motions, sometimes from the same stars, are available - the mean velocities in

all three directions agree within the error bars. This means that anisotropy of

the stellar orbits - caused, for instance, by predominantly very elliptical orbits
- does not play a significant role in the Galactic Center.

The final distribution of the enclosed mass as a function of true radius (from
SgrA*) is shown in Fig. 3 and is the result of applying the so-called Jeans

equation as well as projected mass estimators to all available stellar radial and

proper motion data (Eckart and Genzel 1997, Genzel et al. 1997). The data

are fitted extremely well by the combination of a central point mass (2.61
[0.15stat, 0.35stat+sys] x1O'MD) and a nearly isothermal stellar cluster of

core radius -0.38 pc and core density 4 x 10' MD pc-'. The latter is a good fit

to the stellar light distribution with a mass to 2 pm-band luminosity ratio of 2

(indicated as a fat dashed line in Figure 3). The central mass is 'dark', as it has

to have a mass to luminosity ratio of 100 or greater. If the central point mass is

replaced by a dark cluster, its central density has to be in excess of 2 x 1012 M(D

pc-' in order to still be consistent with the data, about 500,000 times greater
than that of the visible cluster.

5 Nature of the central mass

Basic considerations on the stability of dark clusters composed of white dwarfs,
neutron stars, stellar black holes or sub-stellar entities show that a dark cluster

of mass 2.6 x 106ME) and density 2 X
12 M0 pC-3 or greater cannot be stable

for more than about 10 million years (Maoz 1995, 1997, Genzel et al. 1997).
The majority of the Galactic Center stars, however, are older than 108 or 109

years. It is also not possible that the dark mass concentration is the core-

collapsed state of a dynamically evolving cluster. In that case, the distribution
- while very dense in a tiny core - would have a soft, quasi-isothermal envelope,
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Fig. 3 Mass distribution in the central 10 pc of the Galaxy as obtained from stellar

dynamics. Shown as filled circles and crossed rectangles with 10, error bars are the

Jeans equation and projected mass estimator, mass estimates obtained from proper

motions and radial motions, respectively, assuming a Sun-Galactic Centre distance of

8 kpc (Genzel et al. 1997). Mass estimates from the proper motions data of Ghez et

al.(1997) are in excellent agreement with these values. For comparison, mass estimates

from gas velocities (e.g. Serabyn and Lacy 1985, Lacy et al. 1991, Guesten et al. 1987)
are given as open triangles. The thick dashed curve represents the mass model for the

(visible) stellar cluster (MIL(2 pm)=2, Rc.,,=0.38 pc, r(R = 0) = 4 x 10,3 M, PC-3 ,

Genzel et al. 1996). The thin continuous curve is the sum of this stellar cluster plus
a point mass of 2.61 x106 MD. The thin dotted curve is the sum of the visible stellar

cluster plus an a=5 Plummer model of a dark cluster of central density 2.2x 1012 M0

PC3and R.=0.0065 pc (Genzel et al. 1997). This measured enclosed mass distribution

is the currently best conclusive evidence for a massive black hole at the center of the

Milky'Way.

unlike what is observed in the Galactic Center. Finally, if the dark mass were

conjectured to consist of a degenerate gas of fermions, the m-2 dependence of

the Chandrasekhar mass on the mass m of the constituent particles requires that

the mass of the fermions cannot be much larger than that of the electron. The

only realistic configuration without net electric charge would then be a positron-
electron plasma which would, however, rapidly decay through annihilation line

radiation. Two further arguments strengthen the conclusion that the dark mass

in the Galactic Center must be a black hole. The first comes from the fact that

SgrA* itself is known from VLBI measurements to have a proper motion of less

than about 20 km/s (Backer 1996). In the very dense Galactic Center core, the

fast moving stars near SgrA* and SgrA* approximately should have the same
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kinetic energy. The large (factor 100) difference in observed motions means that

SgrA* must be at least 104 times more massive than those stars, or 105 M(D,
unless its motion is exactly along the line of sight. If one further assumes that the

mass of SgrA* is at least as concentrated as its radio emission (radius 1.5x 1013

cm, Backer 1996), the inferred density of SgrA* is at least 1020-5 M0. This lower

limit is only five orders of magnitude smaller than the equivalent density of a

2.6 x106 M(D black hole within its Schwarzschild radius of _1012 cm. The second

argument is an inversion of the well known dilemma that if SgrA* is a million

solar mass black hole, it is presently radiating at a rest mass energy to radiation

conversion efficiency of 10-5 to 10-6, considering the accretion of stellar wind

gas from its environment (Melia 1992). The only possible way out - apart from

very large amplitude variability in the accretion - is the argument that in purely
radial (Bondi-Hoyle) or in low-density non-radial flows most of the rest mass

energy of the accretion flow can be advected into the hole, rather than radiated

away (Rees et al. 1982, Melia 1992, Narayan et al. 1995, 1998). This explanation
then requires the existence of an event horizon and does not work with any

configuration other than a black hole (Narayan et al. 1997). Taking all these

arguments together it is hard to escape the conclusion that the core of the Milky
Way in fact harbors a massive, but presently inactive central black hole.
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Abstract. The broad lines in Active Galactic Nuclei (AGN) discovered recently have

been interpreted as evidence for emission close to a central black hole. We briefly
describe the physical processes leading to the line emission, describe the computational
methods used to compute the emerging line profiles, and summarize the qualitative
behavior of these lines. We present the observational evidence for the relativistic lines,
concentrating on the properties of the line in MCG-6-30-15, where the line profile
shows strong indications that a Kerr black hole is present in the object. Finally, we show

how future X-ray missions will help in deepening our understanding of the emission of

broad iron lines from AGN.

1 Introduction

As reviewed in several chapters of this volume there is ample evidence for the

presence of optically thick accretion disks in Active Galactic Nuclei (AGN) and

in Galactic black hole candidates. While the high luminosity of AGN is a good
indicator for the presence of a deep potential well, the evidence for the geometry
of the accretion process has to rely mainly on indirect evidence from the UV,
X-ray, and 7-ray spectrum. The ultraviolet excess seen in most AGN, the "big
blue bump", and (probably) also the soft X-ray excess below I keV are usually
assumed to originate in the accretion disk. At energies above I keV the spectrum
of AGN can be roughly described by a power-law with a photon index of 1.7

and, at least in Seyfert galaxies, an exponential cutoff above 100 or 200keV.

The current physical interpretation of this X-ray and -y-ray power-law compo-
nent is that of Comptonization of the soft photons in a hot electron plasma,
usually called an accretion disk corona, situated geometrically close to the ac-

cretion disk [6, 13, 12]. See [26] for a review of the radiation processes around

AGN. Although the geometry of the X-ray producing region is still unclear, with

possibilities ranging from "standard" thin accretion disks to more complicated
accretion geometries as the advection dominated flows and the solutions pro-

posed by Chakrabarti in this volume, there is general agreement that the high
temperatures necessary for the production of the hard radiation are only pos-
sible in the close vicinity of a black hole, closer than about 100 Schwarzschild

radii, where relativistic effects are important. The X-ray and -y-ray radiation

F.W. Hehl, C. Kiefer, R.J.K. Metzler (Eds.): LNP 514, pp. 69 - 79, 1998
© Springer-Verlag Berlin Heidelberg 1998
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from Seyfert galaxies should therefore exhibit signatures that allow us to di-

rectly probe this region and perhaps even to find physical processes enabling
us to directly measure parameters of the black hole as its mass or its angular
momentum.

The availability of high sensitivity X-ray and -y-ray satellites in the past ten

years has allowed the observational study of the broad band spectrum of AGN to

search for such processes. Recently, extremely broad Iron fluorescence lines have

been observed in several Seyfert galaxies. The most convincing interpretation for

these lines is that they are produced in a geometrically thin accretion disk close

to a central black hole. If this interpretation is correct, the line profiles are the

best evidence for the existence of black holes known so far. In this review, we give
a brief introduction to the field. In 2 we describe the physical processes leading
to line emission close to the black hole, i.e. Compton reflection and fluorescent

line emission (2. 1), followed by a description of the computational methods used

to calculate the emerging line profiles (2.2), and a summary of the qualitative
behavior of the emitted lines (2.3). In 3, we describe the observational evidence

for the relativistic lines and give a summary of possible future observations.

A recommended review of the subject stressing the observational material has

recently been published by Fabian [7].

2 Line Emission Close to the Black Hole

2.1 Compton Reflection and Reprocessing

One direct consequence of the Accretion Disk Corona model is that it requires
the presence of a hot electron plasma with a temperature of a few 100keV in

the close vicinity of the cold accretion disk, which has a temperature of less

than 106 K (- 0. 1 keV). Due to the proximity of the cold material, hard X-rays
emitted from the corona interact with the cold material, leading to observable

spectral features. In a gas with U ; 0.2keVonly Hydrogen and Helium are

fully ionized. Most metals, i.e. elements with a nuclear charge number Z > 2,
are only moderately ionized [241. Since the cross-section for photo-absorption is

Ubf c)c E-1, most of the irradiating soft X-rays (i.e. photons with E ; 10 keV) get
photo-absorbed within the accretion disk. On the other hand, the cross-section

for Compton scattering is almost equal to the Thomson cross section UT (a con-

stant), so that photons with high energies predominantly Compton scatter off

the electrons in the disk. The threshold energy above which Compton scatter-

ing dominates is about 15 keV. Since the electrons in the accretion disk have

low thermal velocities, Compton scattered X-ray photons with E >> 15 keV lose

energy. The result of these two processes, photo-absorption and Compton scat-

tering, is a "hump" of radiation in the spectrum emerging from the disk, peaking
at about 30 keV(Fig. 1; see also, [18, 10, 19], and references therein). Such humps
have indeed been found in many Seyfert galaxies, proving the presence of cold

matter in these objects [21].
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Fig. I Reflection spectrum for a cold disk irradiated with a power-law with pho-
ton-index r = 1.9. From top to bottom, the plot shows the total emerging spectrum,
the incident power-law, and the reflection spectrum. Note the strong Iron K,, line at

6.4 keV and the Iron KO line and Iron K edge at 7.1 keV. The spectrum was generated
with our Monte Carlo code (Wilms, 1996, unpublished), using the cosmic abundances

given by Grevesse [11], photo-absorption cross-sections from Verner et al. [29], and

fluorescence yields from Kaastra & Mewe [15].

In addition to the reflection hump, the reprocessing of the irradiated X-rays
within the accretion disk also leads to the production of emission lines in the X-

ray spectrum below 10 keV. The absorption of an X-ray photon by the K-shell of
an atom can lead to the emission of a K, fluorescence photon. For astronomical

objects, features of Iron are especially abundant, since Iron has a high cosmic

abundance and high fluorescence yield (Fig. 1). Consistent with this picture, Iron
features have been found in most Seyfert galaxies [22].

2.2 Radiative Transfer in the Kerr Metric

Since the spectrum is emitted close to the black hole, an observer at infinity will

see the spectrum of Fig. I "distorted" by relativistic effects, namely Doppler
boosting and gravitational red-shift. In this section, we briefly show how to take

care of these effects. Due to space limitations, we can only sketch the important
physics, for the details we refer to the literature referenced.

The specific flux F,. at frequency v. as seen by an observer at infinity is

defined as the (weighted) sum of the observed specific intensities I,. from all
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parts of the accretion-disk,

F,. I,. cos 0 dS?,

where Q is the solid angle subtended by the accretion disk as seen from the

observer and 0 is the angle between the direction to the disk and the direction

of the observed photon. Since the black hole (=AGN) is assumed to be very far

away from the observer (=us), we can safely set cos 0 = 1. Thus, we "only" have

to compute the specific intensity I,. at infinity from the spectrum emitted on

the surface of the accretion disk, I,,,. In an axisymmetric accretion disk, I, is a

function of the radial distance from the point of emission from the black hole re

and of the inclination angle ie of the emitted photon, measured with respect to

the normal of the accretion disk.

Due to Doppler boosting and gravitational red-shift, the observed frequency
v. is related to the emitted frequency ve by

VO 1
(2)

V, + Z

where z is the red-shift of the photon. According to Liouville's theorem, the

phase-space density of photons, proportional to Ilv3, is constant along the path
of propagation of the photon (the null-geodesic) .

It is therefore possible to express

eq. (1) in terms of the emitted specific flux on the accretion disk:

IV. L f g3 Iv,,Fv. -
- v.3 df2 f v' v03 df2 (re, ie) dS?. (3)3 3ff
0 ( V 0
 

0 f2

In other words, the computation of the emerging spectrum breaks down to the

computation of the "red-shift" g. In the weak field limit, when r1M > 3 in

geometric units, and in the Schwarzschild metric, g and therefore the line profile
emitted by the accretion disk, can be evaluated analytically. Profiles computed
this way have been presented, e.g., by Fabian et al. [9] for the Schwarzschild

case, and by Chen & Halpern [4] in the weak field limit. In most cases, however,
the computation has to be done in the Kerr metric since the accreting black hole

will be sped up by the captured material [28].
The "brute force" approach to the computation of g in the Kerr metric is

the direct integration of the trajectory of the photon in the Kerr metric [3, 16].
This approach allows the computation of exact line profiles even in the case of

very complicated geometries, like thick accretion disks, but is very expensive:
The computation of one line profile takes several hours on a typical workstation,
and several tens of minutes on a supercomputer (Bromley, Chen & Miller [3]
quote a computation time of 15 minutes on a Cray T3D with 128 nodes for
the computation of one line profile). It is clear, therefore, that ray-tracing is

not suitable for the analysis of X-ray observations, where a direct comparison
between the measured data and the theory is to be made using a X

2 minimization

method.



4. Broad Iron Lines in Active Galactic Nuclei 73

The second way to compute the observed flux was first used by Cunningham
[5] who noted that the observed flux from eq. (3) can be expressed by

F,. = f T(i, re, g) I,, (re, i e) dg re dre , (4)

where the integration is carried out over all possible "red-shifts" g and over the

whole surface of the accretion disk. This form is well suited for fast numerical
evaluation. All relativistic effects are hidden in the transfer-function T. We refer
to [5], [17], [25], and the references in these works for the technical details.

Numerical values for T from the computations of Laor [17] are available in FITS-
format as part of the popular X-ray analysis package XSPEC [1]. For detailed

studies, a FORTRAN 77 code is available [25]. This code needs about 5 minutes

on a DEC Alpha machine (233 MHz) to compute T for one value Of ie. The

evaluation of the line profile afterwards takes almost no time.

2.3 The Emerging Line Profile

In Figs. 2 to 4 we illustrate the relativistic effects on the emerging line profile.
Due to its astrophysical importance, we chose the Iron fluorescence line at 6.4 keV
for our examples. To facilitate the translation to other lines, we indicate the red-
shift on the upper abscissa of the figures. All line profiles have been computed
with the code of Speith, Riffert & Ruder [25].

In our computations we assumed a geometrically thin, but optically thick

Keplerian accretion disk to be the source of the line radiation. We note that

our adopted velocity profile is different from the profiles resulting from the thick
accretion disks presented by Chakrabarti elsewhere in this volume. The local

emissivity of the line on the disk was parameterized as

I, (re, ie) oc (1 + a/i)p' - r
-'

, (5)

where a, b, and a are free parameters, and where ti = COS ie. This parameteriza-
tion is sufficient for most practical work [2]. For optically thick material, a, b = 0,
for the optically thin case, a = 0, b = - 1, and for general limb-darkening, a :,4 0,
b = 0. In our computations, the disk was assumed to be optically thick. For
realistic accretion disks, the coefficient for the radial emissivity a ranges from 2

to 3 (the comparison with observations, 3, indicates a ;zz 3).
Common to all line profiles is a characteristic double-horned shape (Fig. 2).

This shape is due to the Doppler effect, with the line emitted from material

receding from the observer being red-shifted, and the line emitted from mate-

rial moving towards the observer being blueshifted. Contrary to accretion-disks
around no-mal stars, the emitted line profile is not symmetric: relativistic boost-

ing causes the blue wing of the line to be much stronger than the red wing (it is

customary in astronomy to call lower energies "red" and higher energies "blue",
even when talking about lines in other energy bands than the optical). In addi-
tion to the Doppler boosting, the line is also red-shifted due to the gravitational
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Fig. 2 Line profile as a function of the inclination angle i. for a = 0.9981 and a 0.5.

red-shift. The influence of both effects on the line profile depends on the ob-
servers' inclination angle io: For a disk seen almost face on (i.e. io close to 0'),
the gravitational red-shift dominates. With larger and larger io, Doppler effects
become dominant.

The broadest parts of the profile are due to material emitted very close to the
black hole, as is evident from Fig. 3 where line profiles for different emissivity
coefficients a are shown. For large a, most of the line emission takes place close to

the last stable orbit,- so that these profiles are the broadest. Note that for values
of a ;>- 2 the red wing of the profile gets weaker until it is almost undetectable.

For the same emissivity coefficient a, the blue wings of lines emitted from
disks around Schwarzschild and Kerr black holes are almost indistinguishable
(Fig. 4), the red wings, however, are very different since in the Kerr case the
radius of marginal stability, i.e. the inner edge of the accretion disk, is closer to

the black hole than in the Schwarzschild case. Therefore, the red wing of the line

can extend to much lower energies than in the Schwarzschild case. These effects
from regions close to the last stable orbit, are the most promising for measuring
general relativistic effects around Kerr black holes [17].

3 Observational Evidence for Broad Iron Lines

3.1 The Case of MCG-6-30-15

The rapid evolution of moderate resolution X-ray detectors in the past decade

finally made the discovery of relativistically broadened Iron lines possible. The
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Fig. 3 Line profile as a function of the coefficient of radial emissivity a, where the
emitted intensity profile is 1, oc r-' (eq. (5)), for a black hole with a 0.5. To

emphasize the different profiles, the lines have been flux-normalized.
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Fig. 5 Average line profile of MCG-6-30-15, as observed with ASCA. The best-fit

power-law continuum has been subtracted [27].

best candidate for such a line is the Seyfert galaxy MCG-6-30-15. Here, the

Japanese Advanced Satellite for Cosmology and Astrophysics (ASCA) discov-
ered a strongly broadened Iron feature with a full width at zero intensity of
100 000 km/sec [27]. Comparing Fig. 5 with Fig. 2 shows that such a profile has

to come from a disk that is seen close to face-on, since the blue-wing of the line

is still very close to the rest-frame energy of the line. Fitting the data with the

theoretical line models shows that the observed line profile is consistent with

that emitted by an accretion disk seen at an inclination of 30 3' [27]. As we

showed in the last section, the line profiles from Schwarzschild and Kerr black
holes are very similar, with the main difference being in the very red parts of
the line. For determining the type of the black hole, therefore, a more careful

analysis of the observation of MCG-6-30-15 has to be done. Iwasawa et al. [14]
looked at the temporal changes of the Iron line profile during the 4.5 days of
the ASCA observation and correlated the profile with the observed variability of

MCG-6-30-15. They were able to find three distinct "states" of the line: when

MCG-6-30-15 was close to its average flux (Fig. 6b), the profile is similar to the

average profile shown in Fig. 5, at times where the flux was very large (Fig. 6a),
the line profile is very narrow and centered at 6.4keV. Finally, when the source

intensity was very small (Fig. 6c), the line is very broad and extends down to

about 4keV. This large width is only possible if the line is emitted from ma-

terial inside six gravitational radii, i.e. inside the marginally stable orbit for a

Schwarzschild black hole. Such an emission is only possible if the central object
is a Kerr black hole where the disk can extend to smaller radii.
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Fig. 6 Variability of the fluorescent iron line in MCG-6-30-15, the different panels
show the line profile for phases with high flux (a) down to phases where the continuum

flux was very small [14]

If this interpretation of the line variability is true, then the observations

present the first direct evidence for rotating black holes. Although various ob-

jections have been raised against the interpretation of the line as a relativistic

line, most objections can be rejected on physical grounds [8]'.
There is strong evidence that the broad Iron line of MCG-6-30-15 is not a

special case, but that broad Iron lines are a common phenomenon. In a recent

study, Nandra et al. [20] analyzed ASCA observations of 18 Seyfert 1 galaxies.
They find evidence for broad lines with a strong asymmetry of the profiles to the

red in all 14 objects in which they could detect a line. Nandra et al. [20] were able

to explain these lines with relativistic line profiles, but due to the poor signal to

noise ratio they could not distinguish between lines from Kerr or Schwarzschild

black hole accretion disks.

3.2 The Future: AXAF, XMM, and Such

Although the ASCA results are very exciting and have undoubtfully opened the

door to directly observing relativistic effects in AGN, more detailed observations

See, however, the objections by Reynolds & Begelman [23] that could weaken the

result for the angular momentum of the central black hole.
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are needed.
With the currently planned next generation X-ray missions, the American

Advanced X-ray Astrophysics Facility (AXAF; launch 1998), the Russian Spec-
trum-X/7 (SXG, launch 1998), the European X-ray Multiple Mirror mission

(XMM; launch 1999), and the US-Japanese Astro E (launch 2000), we will be
able to use X-ray instruments with a much higher energy resolution and larger
effective areas than presently available. The huge effective area of XMM will al-
low us to probe for temporal variability in the line on much smaller time-scales
than presently possible: With XMM we might be able to study the time-delay
between fluctuations in the continuum and the reaction of the line to these fluc-
tuations, allowing us to directly probe the geometry of the accretion flow. The

large energy resolution of AXAF and Astro E will enable us to measure line
profiles with a much higher resolution than ever before, which should help us to

distinguish without doubt between the current relativistic models for the broad
line emission. In the framework of the European EPIC consortium for XMM,
two of us (J.W. and C.S.R.) have proposed an uninterrupted 100ksec observa-
tion of MCG-6-3Q-15. The signal to noise ratio of such an observation will be
much higher than that of Fig. 6, making the study of the line variability on short
time-scales possible. Our future ability to observe relativistic effects happening
on a large scale close to 10' Ma black holes look very positive indeed.
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Accretion and Winds around Galactic and Extragalactic
Black Holes
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Abstract. We describe the evolution of models of accretion disks around black holes.

We emphasize the importance of centrifugal barrier supported quasi-spherical dense

boundary layer (CENBOL) surrounding black hole that is being recognized in recent

times. Most of the current observations, such as the hard to soft state transition,
quasi-periodic oscillations, power-law spectral slope in soft states, almost constancy of

power-law slopes in both hard and soft states, pattern of the rise and fall of intensities

in X-ray novae and processes and rates of mass outflow could be easily understood

using the advective disk model which includes this barrier.

1 Introduction

Study of modern accretion process on stars and compact objects began with

Bondi's solution of spherical flows (Bondi, 1952). This revolutionary work was

carried out when 'black hole' phrase was not known and although the Schwarz-
schild solution of Einstein equations was discovered, the Kerr solution for ro-

tating compact flow was not. The Bondi solution was obtained in Newtonian

geometry for a pointlike mass. The general conclusion was that the subsonic
flow with specific energy 9 - na

2 > 0 (where n is the polytropic index of the
00 -

flow, and a,,,, is the adiabatic sound speed at a large distance) which begins at

rest at infinity would pass through a sonic point and becomes supersonic till the

star surface. This conclusion would be strictly incorrect if the stars were of finite

size, since in the latter case, matter has to stop on a hard surface and therefore
must pass through a shock where the supersonic flow becomes subsonic (unless,
of course the entire flow is subsonic, see, Chakrabarti & Sahu, 1997; hereafter

CS97). In this way, the boundary layer could be studied as a part of the inflow
itself. For a black hole accretion, the flow passes through the horizon with the

velocity of light, and therefore it must remain supersonic. These conclusions are

valid for rotating flows as well (Chakrabarti, 1989; hereafter C89; Chakrabarti,
1996a). For a recent review on spherical flows see, Chakrabarti (1996b, hereafter

C96b) and CS97 and references therein.

Although the excessive luminosities of quasars and active galaxies in the

sixties and seventies were readily interpreted to be due to gravitational energy
release of matter accreting on black holes, problems arose in the procedural
details. Rapidly inflowing spherical matter is of very low density and advects

virtually all the energy through the black hole horizon. Magnetic dissipation
could increase the efficiency of emission (Shapiro 1973ab), but the assumptions

F.W. Hehl, C. Kiefer, R.J.K. Metzler (Eds.): LNP 514, pp. 80 - 107, 1998
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which went in (for instance, equipartition of gas and magnetic fields) were not

at all satisfactory. Shakura & Sunyaev (1973) and Novikov & Thorne (1973)
increased the efficiency of emission by assuming the flow to be rotating in Kep-
lerian orbits. This basically rotating matter is of high density and the radiation
emitted from this optically thick flow is basically black body. The multicolour
black body emission (obtained by summing black body contributions from a

large number of annuli) roughly agrees with the observed accretion disk spectra
in binary systems as well as in active galaxies (see, e.g., C96b).

However, this cannot be the full story. As early as 1979, observed spectra of
the black hole candidates, such as Cyg X-1 (Sunyaev & Triimper, 1979) indicated
that the spectrum consists of two distinct components. Whereas the soft X-ray
bump in these spectra could be explained by a Keplerian disk, the explanation
of the power-law component required additional, and mostly ad hoc, 'Compton
clouds' (or, magnetic corona) which are supposed to produce the power-law com-

ponent by reprocessing the intercepted soft photons emitted by the Keplerian
disk. The behaviour of the power-law component was complex: the energy spec-
tral index a (Fv oc v-') apparently stays closer to 0.5 when the soft bump is

very weak or non-existent (and remains almost constant even when the intensity
of the soft bump changes by a factor of several), and closer to 1.5 when the soft

bump is very strong. In the first case, most of the power is generated in the hard

component and the black hole is said to be in 'hard state', and in the second

case, most of the power is generated in the soft component and the black hole
is said to be in 'soft state' (see, Tanaka & Lewin, 1995; Ebisawa, Titarchuk &
Chakrabarti, 1996; hereafter ETC96 and references therein). Generally, neutron
star candidates are not seen in soft states. Even when they in soft states, they
do not show constant slope power law component which is insensitive to the

luminosity.
The idea that a complete accretion flow must take either the form of a Bondi

flow or the form of a Keplerian disk is clearly absurd. On the one hand, the in-

coming flow must have some angular momentum as it is coming from an orbiting
companion (in a binary system) or some orbiting stars (in a galactic nucleus),
therefore the flow cannot be Bondi-like. On the other hand, the inner boundary
condition on the horizon (that the flow velocity be velocity of light) suggests
that the flow must be supersonic, and hence sub-Keplerian at least close to the
horizon (see, C96b, Chakrabarti, 1996c; hereafter C96c). Thus a realistic flow
must be an intermediate solution between the Bondi flow and a Keplerian disk.
Far away from the black hole, the flow may be cold, Keplerian (may even be sub-

Keplerian if matter is accreted from a large number of stars), but most certainly,
close to the black hole flow must be sub-Keplerian. Roughly speaking, the ra-

dial component of the equation of motion of infalling matter on a Schwarzschild
black hole is given by,

dv
+

I dp
+

A2 (X)
0.

dx p dx X3 2(x - 1)2

[Here, we chose 2GMIc2
= 1 as the unit of length x, c is the unit of velocity
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and M as the unit of mass. A is specific angular momentum, -

2(x 1)2
is pseudo-

Newtonian force that mimics the force due to a Schwarzschild Black hole, see,

Paczyfiski & Wiita, (1980). Also, we use x, r and R as radial distance without

any distinction.] A flow will deviate from a Keplerian disk only when the inertial

force (v dvldx) and/or the pressure gradient force (11p dpldx) are/is substantial

compared to the gravitational and centrifugal forces. (At pressure extrema if the

radial velocity vanishes, or, a low pressure flow if there is a velocity extremum,
the disk could be momentarily Keplerian. Thus, pressure or velocity does not

have to vanish for a Keplerian disk.) Very close to the horizon, the inertial force

causes the deviation [v - 1, dvldx < 0 implies A < AKep -:::::: (x/2) 1/2/(l _ 11X)]
while deviation farther away is also partly contributed by the pressure force term.

The pressure force term is contributed by the radiation pressure if the accretion

rate is very high (Paczyfiski & Wiita, 1980), or, by the ion pressure and possibly
magnetic pressure if the accretion rate is very low (Rees et al., 1982). For low

accretion rates, the cooling processes are inefficient and the flow advects most

of its energy and viscously generated heat towards the black hole just as in a

Bondi flow. Such constant energy, inefficiently radiating, steady as well as time

dependent accretion solutions on black holes and Neutron stars are abound in

the literature (C89; C90; C96c; Molteni, Sponholz & Chakrabarti, 1996; Ryu,
Chakrabarti & Molteni, 1997). In flows with shocks, entropy generated At the

shock is also advected towards the black hole. When accretion rate is increased,
cooling becomes efficient and the disk settles down to a basically Keplerian disk

except at the inner part where it still maintains the sub-Keplerian behaviour.

An important ingradiant of the state-of-the-art accretion flow is the centrifu-

gal pressure supported denser region close to a black hole. Roughly speaking,
the infall time scale being very short compared to the viscous (transport of an-

gular momentum) time scale, the angular momentum A remains almost constant

close to the black hole particularly for lower viscosity. As a result, the centrifugal
force A2/X3 increases much faster compared to the gravity - 11X2 as the flow

approaches the black hole. Matter starts piling up behind this centrifugal barrier

and becomes denser, with opacity -r - rh, where rh is the accretion rate in units

of the Eddington rate Eddington!rate. Eventually, of course, the gravity wins

and matter enters the black hole supersonically since the effective potential is

infinitely negative for all possible angular momentum (e.g., Shapiro & Teukolsky,
1983). What this means is that matter with any amount of angular momentum
can be made to accrete on a black hole if it is 'pushed' hard enough. This is to be

contrasted with the fact that an infinite force is required to push matter to the

surface of a Newtonian point mass with even an insignificant angular momen-

tum. This is why a rotating flow has a saddle type sonic point close to a black

hole, while the closest sonic point is of unphysical 'center' type for a rotating
accretion on a Newtonian compact star.

At the centrifugal pressure supported barrier, matter slows down and its

thermal energy increases. In some region of the parameter space this slowing
down takes place rather abruptly at a standing shock. Most of the thermal

energy of the flow could be extracted through inverse Compton effect if soft
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photons are injected on this region from the Keplerian disk region. This region
is therefore analogous to the boundary layer of a compact star and would be
termed as CENBOL (centrifugal pressure supported boundary layer) in the rest

of the article. Whereas the boundary layer of a white dwarf is of thickness less
than a percentage of its radius, the thickness of the boundary layer (CENBOL)
of a black hole is several (typically 10 - 20) times larger! If the neutron star is not

compact enough, its boundary layer is also of similar size. For compact neutron

stars the boundary layer could be very thin (see, C89). Absence of a centrifugal
barrier in a Bondi flow causes the flow to be inefficient and one requires sufficient

magnetic field to 'jack up' the cooling efficiency. However, CENBOL has just the

right properties: the efficiency of its emission is neither almost zero as in a Bondi

flow, nor fixed and maximum as in a Keplerian disk. Its size and optical depth
are determined by viscosity and accretion rates, thereby giving rise to varieties
of spectral properties as are observed.

The present review of the accretion disk model primarily emphasizes the

importance of CENBOL as predicted by the advective disks in black hole as-

trophysics: from the steady and non-steady spectral properties of the black hole

candidates, to the formation of the jets and outflows, and to the possibility of

nucleosynthesis (which includes enhancement of metalicity in the galaxy and in-
fluence on deuterium and lithium abundances). This review also discusses, albeit

briefly, how all the other models of the accretion flows could be derived from the
exact global solutions of the advective disks.

2 Complete Solution Topologies of the Advective Disks

Advective accretion flows are those which self-consistently include advection ve-

locity as in Bondi flows at the same time include viscosity, heating and cooling
processes. For a black hole accretion, these are same as viscous transonic flows

(VTF) discussed in detail in Chakrabarti (1990) and C96a. For a neutron star
accretion the flow need not be transonic and the advective disks include that

possibility as well. Typical hydrodynamic equations which govern vertically av-

eraged advective flows in the pseudo-Newtonian geometry are as follows (C96a):
(a) The radial momentum equation:

,\2 2dv I dp Kep
-

V_ + __ +
3

. =:0 (1a)dx p dx X

(b) The continuity equation:

d
(ZXV) = 0 (1b)dx

(c) The azimuthal momentum equation;

VdA(x)
-

1 d
(X2 wxo) = o (1c)dx Ex dx
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(d) The entropy equation:

ZvT
ds h(x)v p( nudx F3 - 1 dx

_F1 P) = Q+
"
+ Qv"

P

Q+ - g(x, rh)q+ = f (a, x, rh)q+. (1d)

Here, we have included the possibility of nuclear energy release as well. On
the right hand side, we wrote Q+ collectively proportional to the cooling term

for simplicity (purely on dimensional grounds). The quantity f is almost zero

on the Keplerian disk and about 1 close to the horizon. Here,

F3 = 1 +
r, - 0

;rl =0+
(4 - 3,3)2(7 _ 1)

(2)
4-3,3 0 + 12(7 - 1)(1 - 0)

and O(x) is the ratio of gas pressure to total (gas plus magnetic plus radiation)
pressure:

)3 (x) pUllimp
(3)

pkT/timp + 4T4/3 + B(X)2/47r

Here, B(x) is the strength of magnetic field in the flow, p and p are the gas pres-
sure and density respectively, Z is the density integrated in vertical direction,
T is the temperature of the flow (proton and electron), h(x) is the height of
the flow chosen to be in vertical equilibrium, a is the Stefan's constant, k is the
Boltzmann constant, 1L is the electron number per particle (and is generally a

function of x in case of strong nucleosynthesis effects), mp is the mass of the pro-
ton. Two temperature solutions are important in the case where strong cooling is

present (Chakrabarti & Titarchuk, 1995; hereafter CT95). In an optically thick

gas, the cooling is governed by black body emission, while in optically thin limit
it could be due to bremsstrahlung, Compton effects, synchrotron radiation etc.

(see, Rybicki & Lightman, 1979). Except for Compton scattering, other coolings
are computed analytically and is very simple to take care of. A novel method to

include Compton cooling (first used in CT95) is to fit analytical curves of the
numerical results of Sunyaev & Titarchuk (1985) for the cooling function as a

function of the optical depth:

g 3e-(-r0+2))C0S 7r

(1 _
T

) +
3
e
-(To+2) (4)

2 2 TO 2

where, 7-0 is the total Thomson optical depth of the CENBOL region and by
construction g(-ro) = 1. This is easily translated in radial coordinate for a typical
flow model and used in the energy equation 1 (d). Similar set of equations can be

easily written in Kerr geometry (Chakrabarti, 1996c) and the resulting solution

topologies remain identical.
The general procedure of solving this set of simultaneous differential equa-

tions is provided in C90 and in C96a in detail. Although the flow deviates from

a Keplerian disk to pass through a sonic point, and therefore the sonic point
properties are to be obtained a posteriori, it is best to assume the location of the
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sonic point as well as the angular momentum at that point along with a viscosity
parameter. The solutions are integrated outward till they reach a Keplerian disk.

This way the shock-free solutions are obtained. Most of the 'shock-free' solutions

which pass through the outer saddle type sonic points do pass through shocks

and then through the inner sonic points on their way to black holes and neu-

tron stars. (Careless computations usually miss these solutions.) To search for

solutions which include shocks, one has to incorporate Rankine-Hugoniot condi-

tions so that global solutions which pass through multiple sonic points may be

obtained without difficulty.
An alternate approach may be to start with a Keplerian disk and integrate

forward so as to obtain the sonic point and the corresponding angular momen-
tum. This is used in slim disk models (Abramowicz et al. 1988; Narayan & Yi,
1995). But this approach requires a large number of extra unknown parame-

ters to launch the solution from rest and is likely to miss sonic points unless

the parameters are fine tuned by several decimal places. By construction, this

method always misses the shock solutions (which requires that the flow should

pass through two sonic points, and not just one).

2.1 Solution topologies in inviscid flow

In the case of inviscid flow, all possible solutions are shown in Fig. la (C89,
C90, C96a) where radial Mach number M vs. logarithmic radial distance is

plotted. In the central box, the parameter space (spanned by specific energy E

and specific angular momentum A) is divided into separate regions depending on

the nature of the solution topology. Complete solutions in regions 0 and I have

only one sonic point and are analogous to Bondi Flows. Incomplete solutions

in 0* and P have one '0' type sonic point as well and are otherwise useless.

Constant angular momentum solutions cannot join with a Keplerian disk, but

when viscosity is added, solutions in 0* and P join with cool Keplerian disks.

Complete accretion solution in SA are unstable to form shocks, while those

of NSA, NSW and SW are shock-free. Complete wind solutions in SW have

shocks, while those of NSA, SA and NSW are shock-free. Low viscosities do

not change the conclusions, but high viscosity removes the shocks. The complete
solutions from regions S > 0 with and without shocks cannot join with a cold

Keplerian flow even when viscosity is added, since these flows are not bound. If

one writes the net energy (Bernoulli constant) as

1 2
1 A2 1 2

1
V +_

2
+ - a (5)

2 2 x -y- 1 , 2(x - 1)

our arguments will be clearer. (Here we did not include the rest mass energy
in S. a, is the adiabatic sound speed). For a cold Keplerian disk, sound speed

a, - 0, v - 0, and AK -

1 X3
.
At the junction point, where the advective

2 (x-1)2
disk meets the Keplerian disk, A = AK and E -

(2 _x) < 0 for all x > 2. Only4(x-1)2
when the disk is very hot (a, > 0), or away from the equatorial plane (where
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potential energy is smaller) or matter coming out of cold disks and eventually
heated up by, say, magnetic flares, can have specific energy larger than 0 and can

join with the advective disk solutions. Note that these hot, energy conserving
solutions are for strictly inviscid flow. The entire energy of the flow is advected

to the black hole rendering the disk to be non-luminous. It is proposed that

this may be the reason why our galactic center is also faint in X-rays (C96b),
although arguments based on total luminosity is usually not a full proof (SC97).
It is exciting that the same set of equations 1(a-d) shows a rich variety of time

dependent behaviour. This will be discussed in the next Section.
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Fig. I Classification of the parameter space (central box) in the energy-angular momen-
tum plane in terms of various topology of the black hole accretion. Eight surrounding
boxes show the solutions (Mach number along y axis and logarithmic radial distance

r along x axis) from each of the independent regions of the parameter space. Similar

classification is possible for all adiabatic index y < 1.5. For ^f > 1.5, only the inner

sonic point is possible other than an unphysical '0' type point (C96a). Figure is from

C97c.
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The above Figure is drawn for the adiabatic index -y = 4/3. The classification

is universal for all Kerr parameters and is independent of the flow model that is

employed as long as -y < 1.5 (C90) [note that in Chakrabarti (1997a), the sign <
was misprinted as >]. For 7 > 1.5, two sonic points cannot form and therefore

the shocks cannot form, but the centrifugal barrier would still exist.

The solution branch which is supersonic close to the axis is valid for black

holes while the solution branches subsonic close to the axis are valid for neutron

stars. This is discussed in details in C89 and more recently in CS97. The solution

entering through the horizon is unique, since it must pass through the sonic

point. This is physically appealing since the horizon properties are independent
of any physical parameters such as temperature and pressure etc. The solution

touching a neutron star surface is not unique in the same token since any number

of subsonic branches from infinity can come close to the axis (either through
shocks or without shocks). Of course, ultimately, the one which match with the

surface properties of the star will be selected. In a black hole accretion such

choices are not present.

2.2 Solution topologies for viscous advective flows

Complete set of topologies of the viscous solutions are presented in C90 for

isothermal flows, and they remain identical even when the assumption of isother-

mality is dropped (C96a). Typical solutions from C90 are shown in Fig. 2(a-d)
and the corresponding angular momentum distributions are shown in Fig. 2(e-
h). Each solution is identified by only three parameters, namely, the inner sonic

point xi, the specific angular momentum at the sonic point Ai, and the con-

stant viscosity parameter a. The closed solutions of Fig. 1 open up in presence
of viscosity. For low enough viscosity, shock condition may still be satisfied as

in Fig. 2a, but as a is increased (2b), Ai, is reduced (2c), or xi, is reduced, the

topologies change completely. The open solution passing through the inner sonic

point joins with a Keplerian disk at XK. For a given cooling process (mainly
governed by the accretion rate) XK strongly depends on viscosity: higher the

viscosity, smaller is XK. This paradoxical property is primarily responsible to

the observed nature of the novae outbursts (ETC96). This is exactly what hap-
pens if parameters are taken from the region P where only inner sonic point is

present. The outer sonic point is also present for flows with positive specific en-

ergy, and thus, in principle, the solutions passing through the outer sonic point
may also join with a Keplerian disk. However, we suspect that in absence of

stable shock solutions, flows in 2(b-d) would produce unstable oscillatory be-

haviour. The region between the Keplerian disk and the black hole is basically
freely falling, till close to the horizon (X _ A2; note that angular momentum is

nearly constant close to the black hole) where the centrifugal barrier is formed

and matter slows down, heats up and is puffed up. (The geometrical form of the

accretion disk takes a very interesting form, somewhat like what Eardley and

Lightman (1975) originally proposed.) Highly viscous Keplerian disk stays in the

equatorial plane till XK and then becomes sub-Keplerian (a part of the flow may
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also become super-Keplerian before becoming sub-Keplerian) as the flow enters

through the horizon. If the viscosity monotonically decreases with height, the
flow would separate out of a Keplerian disk and form sub-Keplerian halo at a

varying distance depending on the viscosity coefficient a(z). Thus, typically a

generalized accretion disk would have the shape as shown in Fig. 3. The centrifu-

gal barrier closer to the horizon may or may not be abrupt, depending on the

parameters involved. In either case, the flow density, temperature, velocity etc.

remain very similar as is shown in Fig. 4, where two solutions, one with and the
other without a shock are plotted. Thus the properties of CENBOL is indepen-
dent of whether a shock actually forms or not. For comparison, a high viscosity
flow solution is also presented which deviates from a Keplerian disk closer to the
black hole. Figure 2 is drawn for an isothermal advective disk (C90). For a more

general energy equation the solution topologies and their interpretations do not

change (C96a). In passing, we may mention that not only does the stable shock
solutions exist for inviscid and weakly viscous flows, global solutions where the
shocks themselves dissipate a large chunk of the flow energy also exist. An infi-
nite number of such one parameter family of dissipative shock solutions are in
the literature (Abramowicz & Chakrabarti, 1990). Independent shock solutions
in various advective disk models have also been obtained by several authors (e.g.,
Yang & Kafatos, 1995; Lu et al., 1997; Nobuta & Hanawa, 1995).

3 Complete Set of Numerical Simulation Results

Our understanding of the advective disks is greatly enhanced after a series of
numerical simulations were performed to check if the inviscid and viscous solu-
tions were stable or not. Chakrabarti & Molteni (1993), Molteni, Lanzafame &
Chakrabarti (1994), Chakrabarti & Molteni (1995), Molteni, Ryu & Chakrabarti

(1996), Chakrabarti et al. (1996), Ryu, Chakrabarti & Molteni (1997), Lan-

zafame, Molteni, & Chakrabarti (1997) found all possible ways advective disks
behave when the flow is allowed to be fully time dependent. Shock solutions

(from the region SA in Fig. 1) were found to be so stable that the accuracy
and performance of codes could be judged by merely comparing the results with
theoretical solutions. Figure 5 shows the theoretical and numerical simulation
results where the results from three completely different methods (smoothed
particle hydrodynamics, total variation diminishing and explicit/implicit code).
In two dimensions also shocks formed close to the predicted locations. When
the solutions have one sonic point and shocks are not predicted (in regions 0
and I) shocks do not form (uppermost and lowermost sets of curves). When the
solutions have two sonic points but still shocks do not form (in region NSA), the
shocks form nevertheless, but they oscillate back and forth thereby changing the
size of the CENBOL (Ryu, Chakrabarti & Molteni, 1997). In presence of cooling
effects, shocks may oscillate even when stable shocks are present (Molteni, Spon-
holz & Chakrabarti, 1996), especially when the cooling time scale roughly agrees
with the infall time scale. The oscillating shock has the period comparable to the
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Fig. 2 Mach number variation (a-d) and angular momentum distribution (e-h) of an

isothermal viscous transonic flow. Only the topology (a) allows a shock formation. Tran-
sition to open (no-shock) topology is initiate by higher viscosity (a) or lower angular
momentum (Ai,,) or inner sonic point location (ri,,). In (e-h), flow angular momentum
(solid) is compared with Keplerian angular momentum (dotted). The location from
where the angular momentum is deviated varies with the three parameters Figure is
from Chakrabarti, 1996e.

cooling time and is believed to explain the quasi-periodic oscillations observed
in the black hole candidates. The viscous flows also show the similar oscillations

(Lanzafame, Molteni Chakrabarti, 1997). We suspect that whenever accretion
rates of a black hole change substantially (such as when a black hole changes its

state), the oscillations may be set in as a result of competition among various
time scales prevalent in the system.

Chakrabarti et al. (1996) provides a collection of numerical simulation results

including the formation of an advective disk from a Keplerian one far away from
the black hole (and not just near the horizon as in Chakrabarti & Molteni, 1995).
Figure 6a shows the ratio of the disk angular momentum to the Keplerian angular
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Centrifugal Barrier Supported
dense region

bj..t

Fig. 3 Schematic diagram of a multi-component accretion flow (C97a). All the compo-
nents are segregated from the same inflow in different regimes of viscosity. Keplerian
disk (cross-hatched) is flanked by (a generally) quasi-spherical sub-Keplerian halo which

produces a centrifugal pressure supported hot dense region around the compact object.
In the hard state, the Keplerian disk becomes sub-Keplerian at XK2 and produces a

giant torus of about 102-4R, which collapses as viscosity is increased and the object
goes to softer state. When the shock is absent, 1 < X < XS - XK1, becomes the cen-

trifugally supported dense region which reprocesses soft photons in the same way as

the post-shock flow.

momentum in one of the simulations. The shape is typical of such advective flows

(See Fig. 10 of CT95) although the transition from Keplerian to the advective

disk is not exactly smooth! This is because the derivatives dA/dr in an advective
flow is different from that in the Keplerian regime. Figure 6b shows the deviation
of angular momentum of a flow which included a standing shock. Apart from a

mild kink in the distribution at the shock location, the flow is perfectly smooth,
transonic and stable.

4 Complete Set of Spectral Properties of the Advective

Disks

Black holes are being fundamentally black, observational evidences must neces-

sarily include 'funny' spectral signatures of radiating matter entering in them.

The unique inner boundary condition imposed on the solutions automatically
separates the unique solution branch out of many, and therefore it is of no sur-

prise that the spectral properties of the flow entering in a black hole should be

different. The problem lies in quantification of this special character. Here we

present a few observations and how they may be readily interpreted using the

advective disk solutions. The explanations are general (as they are straight from
solutions of governing equations), and do not depend on any particular black

hole candidate. Here we write accretion rates in units of Eddington rate.

Qua.i-pherical Sub-Keplerian
Flow
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Fig. 4 Ratios v,,lvk (solid) and densities (dashed) of three illustrative solutions of the
advective flows (C96a). Note that the centrifugal barrier close to the hole makes all the
three solutions to behave similarly in the region 2 ; x ; 10 - 20, emission from which

strongly determines the spectral properties of the black hole. In a strongly shocked
flow the variations in densities and velocities occur in a shorter length scale while in a

weakly shocked or shock-free flows the variations occur in an extended region.

4.1 Hard and soft states and triggering of their transitions

Galactic black holes are seen basically in two states. In soft states, more power
is in soft X-rays and in hard states more power is in hard X-rays. (The extra-

galactic cases such state separation is not obvious, since the observations are

poorer, and transition of states may take place in thousands of years. Some of
the carefully observed cases the spectral nature was found to be similar to those
of the galactic candidates.) The explanation of this apparently puzzling state

variation is simple: the Keplerian and sub-Keplerian components redistribute
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Fig. 5 Comparison of analytical (solid) and numerical results in a one-dimensional
accretion flow which may or may not allow a standing shock. The long and short
dashed curves are the results of the TVD and SPH simulations respectively while very
long dashed curve is using explicit/implicit code. The curves marked '0' and '1' are for
transonic flows which pass through the outer and the inner sonic points respectively.
They are also reproduced perfectly with numerical simulations (from Chakrabarti et
al. 1996).

matter among themselves depending on viscosity of the flow. Sudden rise in vis-

cosity would bring more matter to the Keplerian component (with rate 7hd) and
sudden fall would bring more matter to sub-Keplerian halo component (with
rate rhh). Disk component Thd not only governs the soft X-ray intensity directly
coming to the observer, it also provides soft Photons to be inverse Comptonized
by sub-Keplerian CENBOL electrons. The CENBOL (comprised of matter com-

ing from Thd and Thh) will remain hot and emit power law (energy spectral index,
Fv - v-', a - 0.5 - 0.7) hard X-rays only when its intercepted soft photons
from the Keplerian disk (See Fig. 4) are insufficient, i.e., when 7hd << 1 to

rhd - 0.1 or so, while Thh is much higher. For ?hd - 0.1 - 0.5 (with rhh - 1),
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Fig. 6a Ratio of disk angular momentum to the Keplerian angular momentum in a

typical time dependent simulation in an advective disk. Note the deviation Keplerian
disk at around R - 30. The flow becomes super-Keplerian close to the hole before

becoming sub-Keplerian as it plunges in (Chakrabarti et al. 1996).

CENBOL cools catastrophically and no power law is seen (this is sometimes

called a high state). With somewhat larger rhd, the power law due to the bulk

motion of electrons is back at a - 1.5 (this is sometimes called a very high state).
Figure 7 (taken from Chakrabarti, 1997a, hereafter C97a) shows a typical hard

to soft state transition as ?hd is increased. Here, power EF(E) is plotted against
the energy E of the emitted photons. The dashed curve drawn for rhd :-- 1.0

includes the convergent flow behaviour of the inner part of CENBOL. Details of

the solutions are in CT95, C97a, and ETC96.
Such hard/soft transitions are regularly seen in black hole candidates (Dolan

et al, 1979; Miyamoto et al, 1991; Ricketts, 1983; Ebisawa et al., 1994; Zhang et

al., 1997).

4.2 Constancy of slopes in hard and soft states

Spectra of the advective disk solutions shows a remarkable property: the slope
a - const in hard states even when rhd is increased by a factor of a thousand

(CT95). The degree of constancy is increased (C97a) if one assumes that the

matter is actually redistributed between the Keplerian and sub-Keplerian halo
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Fig. 6b Numerical simulations of a typical advective disk which forms a standing shock

after deviating from a Keplerian disk. While the flow remains generally sub-Keplerian,
a kink in the distribution at the shock is produced, which, however, remained stable

throughout the simulation (Chakrabarti et al. 1996).

components, rather than assuming that both the components are completely
independent. In soft states also, convergent flow calculations show remarkable

constancy in the slope at around 1.5 - 1.8 depending on the location of the

inner boundary (photon absorption radius). This constancy of slopes is also

regularly seen (e.g. Sunyaev et al., 1994, Ebisawa et al., 1994; CT95 ad ETC96
for references; Kuznetsov et al., 1997). Particularly important is the weak power
law in the soft state as this is not observed in neutron star candidates. CENBOL
around neutron stars may also cool down to produce softs state for the same

reason. However, they can go up to high state and not up to 'very high' state

where the weak power law due to convergent flow is seen.

In bulk motion Comptonization bulk momentum of the quasi-freely falling
electrons (outside the horizon) are transported to the soft photons. In neutron

stars, electrons slow down on the hard surface due to radiation forces acting
on them, and therefore the effect is negligible. Thus black holes should be defi-

nitely identified by spectral signatures alone provided they are seen in soft states

(CT95).
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Fig. 7 Spectral evolution of an accretion disk with a strong shock at X, = 10 around

a black hole of mass 3.6ME) .
The sub-Keplerian halo rate is Thh = 1 and the Keplerian

rates are marked on the curves. The dotted curve is drawn to include the effect of bulk

motion Comptonization when Thd = 1 (Chakrabarti 1997a).

4.3 Variation of inner edge of the Keplerian component

This is trivially achieved in the advective disks (see, CT95; C96a). As viscosity
is increased, the location XK where the disk deviates from Keplerian is generally
decreased if other two parameters (xi, and Ai,) are held fixed. Thus, in hard

states, not only rhd is smaller, the XK is also larger. As the viscosity increases,
XK becomes smaller in viscous time scale, at the same time more matter is added

to the Keplerian component. This behaviour is also seen in black hole candidates

(e.g. Gilfanov, Churazov & Sunyaev, 1997).

4.4 Rise and fall of X-ray novae

While in persistent black hole candidates (such as Cyg X-1, LMC X-1, LMC
X-3) Keplerian and sub-Keplerian matter may partially redistribute to change
states (see 4.1 above), in X-ray novae candidates (e.g., A0620-00, GS2000+25,
GS1124-68, V404 Cygni etc.) the net mass accretion rate may indeed decrease,
even if some redistribution may actually take place. First qualitative explanation
of the change of states in X-ray novae in terms of the advective disk model was

put forward by ETC96. The biggest advantage of the advective solution is that it
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Fig. 8 Typical spectral evolution of an X-ray nova. XK (marked on the curves) could
be very far away as in a low accretion rate, low viscosity disk. We chose: rhh =: 1.0

and Thd = 0.01. Initially, at the onset of an outburst, the optical intensity goes up as

XK is decreased. Subsequently, the hard X-ray goes up first and then the soft X-ray is

intensified. The XK = 9000 and 8000 solutions resemble Novae spectra in quiescence
(from Chakrabarti, 1997a).

automatically moves the inner edge of the Keplerian disk as viscosity is varied.
Similar to the dwarf novae outbursts, where the Keplerian disk instability is

triggered far away (e.g., Cannizzo, 1993) here also the instability may develop
and cause the viscosity to increase, and the resulting Keplerian disk with higher
accretion rate moves forward. In C97a, several such spectral evolutions have been

presented. In Fig. 8, we show one such case, where the increase in viscosity is used
to cause the decrease in XK from 9000 to 10, keeping rhh = 1 and Thd = 0.01.
Note that as the inner edge goes from 9000 to 5000, the optical (around tens of

eV) peaks first, which is followed by hard X-rays (at around hundreds of KeV)
till XK reaches about several hundred Schwarzschild radii. After that the hard

X-ray subsides and soft X-ray intensifies. The optical precursor of an X-ray nova

GRO J1655-40 have been seen recently (Orosz et al., 1997).

4.5 Quiescent states of X-Ray novae candidates

Advective disks naturally explain quiescent states. As already demonstrated in

CT95, C96a, XK recedes from the black holes as viscosity is decreased. With the
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decrease of viscosity, less matter goes to the Keplerian component (Chakrabarti
& Molteni, 1995), i.e., Thd goes down. Since the inner edge of the Keplerian
disk does not go all the way to the last stable orbit, optical radiation is weaker

in comparison with what it would have been predicted by a Shakura-Sunyaev
(1973) model (see, plots for XK = 9000 and 8000 for such spectral behaviour

in Fig. 8 above). This behaviour is seen in V404 Cyg (Wagner et al. 1994) and

A0620-00 (McClintock et al., 1995). The deviated component from the Keplerian
disk almost resembles a constant energy rotating flow described in detail in C89.

It is also possible that our own galactic center may have this low viscosity, low

accretion rate, global advective disks, as mentioned in C96b.

Recently, a so-called advection dominated model has been used to fit these

states (Narayan et al., 1997). In this model highly viscous (a - 0.1 - 0-5) quasi-
spherical flow resulted from Keplerian disk evaporation (which is also in equipar-
tition with magnetic field at all radii!) was used. On the contrary, advective disk

solution presented in C96a does not require such evaporation, and the ion torus

comes most naturally out of the governing equations only for low viscosity case.

The deviation from a Keplerian takes place several thousand Schwarzschild radii

(in high viscosity case angular momentum transport rate becomes so high that

the flow deviates from a Keplerian disk almost immediately outside the inner

sonic point). Advection disks produce the quiescent state like spectra (CT95,
C97a) without making any further unwarranted approximations. Detail fits will

be presented else where.

4.6 Quasi-periodic oscillations

As mentioned in Section 3, in some large region of the parameter space the so-

lutions of the governing equations 1(a-d) are inherently time-dependent. Just as

a pendulum inherently oscillates, the solutions of the advective disks also show

oscillations of the CENBOL region. This oscillation is triggered by competitions
among various time scales (such as infall time scale, cooling time scales by differ-

ent processes). Thus, even if black holes do not have hard surfaces, quasi-periodic
oscillations could be seen. Although any number of physical processes (such as

acoustic oscillations (Taam, Chen & Swank, 1997), diskoseismology (Nowak &
Wagoner, 1993), trapped oscillations (Kato, Honma & Matsumoto, 1988) could

produce such oscillation frequencies, modulation of 10 - 100 per cent or above

cannot be achieved without bringing in the dynamical participation of the hard

X-ray emitting region, namely, the CENBOL. By expanding back and forth

(and puffing up and collapsing at the same time), CENBOL intercepts variable

amount of soft photons and reprocesses them. Some of the typical observational

results are presented in Dotani (1992), Halpern & Marshall (1996); Cui et al.

(1997). Recently more complex behaviour has been seen in GRS 1915+105 (Paul
et al., 1997; Morgan, Remillard & Greiner, 1997), which may possibly be under-

stood by considering several cooling mechanisms simultaneously. Some chaotic

behaviour Of XK under non-linear feed back mechanism cannot be ruled out

either. This is being investigated.
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5 Spin-offs to Other Branches of Astrophysics

Some of the unexpected spin-offs from the advective disk model is that one

can for the first time make quantitative estimate of the mass outflow rate from

a black hole accretion process. Similarly, heavy and light element abundances

may be changed in the hot CENBOL region. Estimated outflow rate together
with modified composition enable one to gauge the importance of black hole

nucleosynthesis on the surroundings. Another spin-off is in the gravitational
wave astronomy of coalescence of binary compact objects. Briefly, we discuss
these issues below.

5.1 Physics of jets: Estimation of the outflow rate from an advective

flow

Outflows are common in many astrophysical systems which contain black holes

and neutron stars. Difference between stellar outflows and outflows from these

systems is that the outflows in these systems have to form from the inflowing ma-
terial only. One advantage of these compact objects is the formation of CENBOL
which behaves like a stellar surface as far as mass loss is concerned. Assuming
this (see, Fig. 9) configuration, mass loss is estimated very easily (Chakrabarti,
1997b). The procedure involves first computing the CENBOL temperature T,
from the incoming flow using steady shock condition and then computing the

mass loss rate from CENBOL using the same procedure as used on staller sur-

face. The ratio of outflow rate to the inflow rate turns out to be,

R
k""t 0,,ut R 3/2 (6)fn

4
-xp

where, f = fo - 1 and fo = (2n + 1)R/(2n) [n = (-y - 1)-1 is the polytropic2

constant.]. Notice that this simple result does not depend on the location of
the sonic point or shock (namely the size of the dense cloud) or the outward

force causing the mass loss. It is a function of compression ratio R for a given
geometry. In a relativistic inflow n 3, -y = 4/3 and R = 7 and the ratio of

inflow and outflow becomes,

Rfn 0.052
(9out

(16a)
(9i.

and for inflow of an ionized gas n 3/2, -y = 5/3 and R = 4, and the ratio in

this case becomes,

Rfi, 0.266
19out

(16b)
19i.

Outflows are usually concentrated near the axis, while the inflow is near the

equatorial plane. Assuming a half angle of 100 in each case, we obtain,

2,7r2 7r3
19in = -9 1 19out

162
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and
19out 7r

(9i. 36

The ratios for 4/3 and = 5/3 are then

Rfi, 0.0045 and Rfi, = 0.023

respectively. This is to be compared with the rate Rj, = 0.004 found in radiation
dominated flow (Eggum, Coroniti & Katz, 1985). Recently, more exact compu-
tation of the mass loss rate has been done using exact transonic solutions for
the inflow and outflow (Das, Rakshit & Chakrabarti, in preparation). Although
the general conclusions remain the same, the details vary. The results would be

presented elsewhere.

Quasi-sPherical
Outflow

Centrifugal Barrier

supported dense rel lon _Compact Object

R.

I
Quasi-spherical

Sub-Keplerian Inflow

Fig. 9 Schematic diagram of inflow and outflow around a compact object. Rotating
matter forms a centrifugal barrier supported dense region around the object which in

turn acts like a 'stellar surface' from which the outflowing wind is developed (from
Chakrabarti, 1997b).

5.2 Nuclear astrophysics: Nucleosynthesis in advective disks around

black holes

Chakrabarti (1986) and Chakrabarti, Jin & Arnett (1987), first pointed out that

a considerable nucleosynthesis could take place during the infall and heavier
elements may be produced inside the thick disk, a fraction of which could be

ejected out through bipolar outflows and jets (see, Horgan, 1988). Although the
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disk model used was very preliminary, the conclusions were firm and were verified

by a large number of independent workers (Arai & Hashimoto, 1992, Hashimoto
et al., 1992) using other disk models.

In the decade since these pioneering works were started, the self-consistent
advective disk model has been developed. This entices one to look into the nucle-

osynthesis problem once more, specially when the shocks and CENBOL regions
are also included in the computation. Fig. 9 shows the variation of the abundance
as the matter enters the advective disk regime. Here only 1ME) central object
and a mass accretion rate Of 100kEdd is used with,3 - P9

= 0.03. The cooling
factor f = 0.5 and viscosity a,, = 0.05 were used whit*g'ave XK = 480Rg are

used. The shock is formed at x, = 13.9Rg (see, Fig. 4 for the full solutions).
The dotted curves are drawn when only the supersonic branch through outer

sonic point is used, while the solid curves are drawn when the solution takes
more stable branch through the shock and finally through the inner sonic point.
At the shock, the sudden rise in temperature as well as higher residence time
in the post-shock flow causes the abundance to change abruptly although the
final product at the horizon remains very similar. The abundances for Neutron

(N), Deuterium (D) and Lithium (Li') are shown. The initial flow leaving a

Keplerian disk was chosen to have a solar abundance. Here 255 isotopes (from
neutron, proton, helium to germanium) have been chosen in the network as in
Chakrabarti (1986).

In the case of higher viscosity, some heavy elements may be produced and
some lighter elements may be destroyed completely. In the low accretion rate

case, spallation reaction could become important to produce some excess Li'
(Jin, 1980), but the main reactants, namely HO may themselves be destroyed
by photo-dissociation process (Chakrabarti et al., 1987). In fact, both HO and
D photo-dissociate into protons and neutrons. Neutrons produced in the flow

produce a neutron tori (till they decay into protons) in the advective region
which, mixing with fresh incoming matter may produce neutron rich isotopes of
the galaxies. Heavier elements which are produced in the disk may supply met-

alicity in the galaxies (Hogan & Applegate, 1987). Jin, Arnett and Chakrabarti

(1989) originally concluded that the effect of nucleosynthesis is important only
for very low viscosities. This is because they focussed on cooler radiation domi-
nated disks. Using present advective disks, even for a - 0.1 - 0.2 the nucleosyn-
thesis effect seems to be important for stellar black holes. Detail calculations
have been reported elsewhere (Mukhopadhyay & Chakrabarti, submitted). The

changes in abundance in the CENBOL region may be important, since the wind
is produced from this region (see above) and a part of wind is intercepted by the

companion star. For instance, Martin et al. 1994 reportedly detected Li' in K-
star companions of black holes, but W itself need not come through winds. The

nucleosynthesis inside the disk could affect the energetics very strongly. Some re-

actions are exothermic and some are endothermic. In future, these considerations
are to be made in a self-consistent disk structure.
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Fig. 10 Hot advective disks allow synthesis of new elements. Here the variation of the

abundances of Deutorium (D), Lithium (Li7 ) and Neutron (N) in an advective disk are

shown as functions of the logarithmic radial distance from the black hole. The dotted

curves are drawn for the flow passing through the outer sonic point and the solid curves

are when the flow passes through the shock at 13.9r, as is formed in this particular
example. Fig. 4 above gives the full shocked solution used here.

5.3 Gravity Wave Astronomy: Effects on gravitational wave

emission

Traditionally, coalescence of two compact bodies is studied in the absence of

accretion disks. When a supermassive black hole at the galactic centre is sur-

rounded by an advective disk through which a companion star gradually moves

in on an instantaneously Keplerian orbit, not only is the angular momentum

of the companion lost due to gravitational wave emission, but some angular
momentum is changed through the interaction of the disk with the compan-
ion. For instance in the super-Keplerian region of the disk, the companion will

gain angular momentum due to accretion from disk material, while in the sub-

Keplerian region it would be the opposite. In either cases, the wave pattern of

the emerging gravitational wave would be affected. Through detailed computa-
tion it was shown that the disk effect could be 7-10 percent of the main effect

(Chakrabarti, 1996d). Similar deviations from standard template is also possible
when self-gravitating disk is present, since Keplerian angular momentum distri-

bution of such disks are completely different (Chakrabarti, 1988). The creation

of templates with different disk models is in progress (Das & Chakrabarti, in

preparation) and would be reported elsewhere.
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6 Other Models - Other Solutions

There have been several models in the literature which were brought in to ex-

plain different observational features from time to time. Most of these models
are far from self-consistent and serve only special purpose for which they were

invoked. Since advective disk model discussed here is considered to encompass all

possible types of solutions governed by known physical laws, one would expect
that this model would have the 'right features in right regime'. As discussed in
the Introduction, the Bondi flow and Keplerian disks are both extreme cases:

one does not have rotation and the other does not have advection properly in-

cluded, one is basically energy conserving (roughly valid for low accretion rate)
spherical advective flow and the other is highly dissipative (roughly valid for

viscous, high accretion rate) disklike flow. Attempts to fill the gap, i.e., to find
intermediate structures were made since early eighties. PaczyAski and his col-
laborators advanced two models: (1) thick accretion disks (Paczyfiski & Wiita,
1980 and references therein): where the flow is still rotation dominated, but it is

non-Keplerian. The radiation pressure is high enough to hold matter vertically,
preventing it from collapsing. This thick disk model was clearly valid for high ac-

cretion rate and the radiation pressure in the funnel was assumed to push matter

vertically to form outflows and jets. Ree et al. (1982) pointed out that the low
accretion rate flow can support vertical structure due to strong ion pressure while
most of the energy is advected. These models were not globally complete as the
disk is generally non-accreting. (2) transonic flows (Paczyfiski & Bishnovatyi-
Kogan, 1981; Paczyfiski & Muchotrzeb 1982): Here the radial motion is also
included but global solutions were not obtained. Preliminary non-dissipative so-

lutions indicated (Liang & Thomson, 1980) that unlike Bondi flow, there are

two saddle type sonic points in an advective flow. Abramowicz & Zurek (1981)
further concluded that the same matter could go through the outer (Bondi) or

inner (disklike) sonic points, although it is now known that they have different

entropies and are to be used by two different solutions (see, C96a for details.).
Matsumoto et al. (1984) were interested to mend the Keplerian disk by trying to
let the flow pass through the inner sonic point while Abramowicz et al. (1988),
in the so-called slim disk tried to find global solutions of the transonic flow in the

high accretion rate (they used rh = 800kEdd) limit without success (although
local solutions were proven to be stable). The transonic solution of Fukue (1987)
had a standing shock wave. Chakrabarti (1989, 1990, 1996a) found all possible
topologies of advective disk solutions in viscous and non-viscous flows, with and
with magnetic fields. The recently re-discovered ion tori (known as advection
dominated flow) model by Narayan & Yi (1994, 1995) is an ad hoe model, as-

sumed to be something like 'corona without a disk'. This corona comes about

by evaporation of the underlying Keplerian disk at low accretion rate. The post-
shock and CENBOL regions of advective disk solutions described in (C89, C90,
C96a) resemble those of thick disks (but accreting!). High accretion rate solu-
tions of advective disk are the globally correct solutions of 'slim disks' (unlike
Abramowicz et al., 1988 model, these flows have angular momentum increasing
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outwards to join a Keplerian disk) and low accretion rate advective disks are the

correct 'advection dominated flows' (unlike Narayan & Yi, 1994, 1995 model,
these flows naturally deviate from a Keplerian disk specially for low viscosity).
Recently, some attempts are being made by these groups to try to reproduce ad-

vective disk solutions in their respective regimes (Chen et al., 1997; Narayan et

al., 1997) although the success has been limited because of less general approach
of solving the eigenvalue problem that the equations 1(a-d) posit. In their ap-

proach the flow is 'let loose' from a Keplerian disk at an arbitrary distance with

an arbitrary initial radial and angular velocity components and only one sonic

point is assumed (thus by construction this method cannot find shocks). It the

advective disk approach (C90, C96a), the flow is allowed to have 'discontinuous'

(shock) solutions which joins two branches in the stable manner. Needless to say
that all these types of solutions are found to be stable except at least a section of

NSA and NSW (see Fig. 1) where the solutions are inherently time-dependent.
Observations of the black hole candidates also indicate that advective disk solu-

tion behaves in the right manner in right regime. Particularly important is the

understanding that the net accretion flow is Keplerian disklike in some region,
and advective in some other region. Today, the need for having the admixture

of Keplerian and sub-Keplerian components is clearly recognized in most of the

observations.

An accretion disk is by definition advective. It was on this philosophy Bondi

flow was studied originally. In the intermediate phase, specially, in seventies

and early eighties, rotating Keplerian disk took over while advection took the

'back seat'. It is releaving that the more and more observations suggest that the

advection effects are important and advective disks are the preferred solutions.

This is true both for black holes and neutron stars. The question of whether an

advective disk can explain observations is outright irrelevant because this disk

represents self-consistent solution of the governing equations which are derived

from fundamental laws of nature (such as conservation of energy and momentum;
unlike various models where ad hoc components are first thrown in by hand

and then justified by tentative arguments) - Unexpected solutions such as those

including CENBOL emerged which behave like boundary layers of black holes!

The same solution produces boundary layer of neutron star as well. These were

unbelievable first, but now they are indispensable in most explanations, given
that they obviated the need to construct 'Compton Clouds' by ad hoc processes

(CT95). The future of the black hole astrophysics is certainly going to be the

correct understanding of this advective region of the flow.
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Abstract. The "membrane model" of black holes (BHs) is a useful reformulation of

the standard relativistic theory of BHs. By splitting the more elegant 4-dimensional

physical laws into space and time (3+1 splitting) we can, e.g. in the case of a station-

ary BH, introduce quantities of an "absolute space" which evolve as functions of an

"absolute time". This formulation is much closer to the intuition we have gained from

other fields of physics. The 3+1 splitting, brings Maxwell's equations into a form which

resembles the familiar form of Maxwell's equations for moving conductors. We can then

use the pictures and the experience from ordinary electrodynamics -
In a second step,

one replaces the boundary conditions at the horizon by physical properties (electric
conductivity, etc.) of a fictitious membrane. This procedure is completely adequate as

long as one is not interested in fine details very close to the horizon. The details of this

boundary layer are, however, completely irrelevant for astrophysical applications.
The following points will be discussed in detail:

- Solutions of Maxwell's equations in a Kerr background
- Space-time splittings
- The horizon as a conducting membrane
- Magnetic energy extraction from a BH
- BHs as current generators or rotators of electric motors

- The Blandford-Znajek process
- Stationary axisymmetric electrodynamics for force-free fields

I Introduction

In these lectures I give an introduction to what is called the membrane model of
black holes (BHs). This is not a new theory, but a convenient reformulation of

the standard relativistic theory of BHs - as far as physics outside the horizon

is concerned -, which is much closer to the intuition we have gained from other

fields of physics (see [11, for a general reference). While the basic equations look

less elegant, it has the advantage that we can understand astrophysical processes
near a BH much more easily. For an analogy, imagine you would have to explain
how a Tokomak works by using the language and pictures of special relativity
(SR), i.e., by using the electromagnetic field tensor and 4-dimensional pictures
of plasma flows. I would not know how to do this and how to get, for instance,
an understanding of even the simplest plasma instabilities. A closer analogy
would be to translate relevant studies of the electrodynamics of pulsars into

a 4-dimensional language. The basic equations look beautiful, but it would be

hard to understand anything. (You may say that radio pulsars are anyhow not

understood.)

F.W. Hehl, C. Kiefer, R.J.K. Metzler (Eds.): LNP 514, pp. 111 - 156, 1998
© Springer-Verlag Berlin Heidelberg 1998
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In the membrane model (often called membrane paradigm [11) one first splits
the elegant 4-dimensional physical laws of general relativity (GR) into space
and time (3+1 splitting). For a general situation this can be done in many ways

(reflecting the gauge freedom in GR) since there is no canonical fibration of

spacetime by level surfaces of constant time. However, for a stationary BH there
is a preferred decomposition. Relative to this the dynamical variables (elec-
tromagnetic fields, etc) become quantities on an absolute space which evolve

as functions of an absolute time, as we are accustomed to from nonrelativis-
tic physics. We shall see, for example, that the 3+1 splitting brings Maxwell's

equations into a form which resembles the familiar form of Maxwell's equations
for moving conductors. We can then use the pictures and the experience from

ordinary electrodynamics.
In a second step one replaces the boundary conditions at the horizon by

physical properties (electric conductivity, etc) of a fictitious membrane. This

procedure is completely adequate as long as one is not interested in fine details

very close to the horizon. The details of this boundary layer are, however, com-

pletely irrelevant for astrophysical applications. (The situation is similar to many
problems in electrodynamics, where one replaces the real surface properties of a

conductor and other media by idealized boundary conditions.)
The program of these lectures is as follows. First I will discuss the 3+1 split-

ting of the spacetime of a stationary rotating BH and of Maxwell's equations
outside its horizon. We shall see that this can be achieved very smoothly by us-

ing the calculus of differential forms. As an illustration and for later use we shall

apply these tools for a discussion of an exact solution of Maxwell's equation on

a Kerr background, which describes an asymptotically homogeneous magnetic
field. We shall then derive the electromagnetic properties of the fictitious mem-
brane that simulate the boundary conditions at the horizon. Here, I can offer
a much simpler derivation than has been given so far in the literature. As an

important example of a physical process relatively close to a BH, I will treat in
detail the magnetic energy extraction of a hole's rotational energy. Blandford
and Znajek have first pointed out the possible relevance of this mechanism for
an understanding of active galactic nuclei. It may well play an important role
in the formation of energetic jets. The Blandford-Znajek process could also be

important for explaining gamma-ray-bursts, because it may energize a Poynting-
dominated outflow.

I hope to show you that the physics involved is not very different from that
behind the electric generator in Fig. 1.

2 Space-Time Splitting of Electrodynamics

I describe now the 3+1 splitting of the general relativistic Maxwell equations on

a stationary spacetime (M,O)g). Most of what follows could easily be generalized
to spacetimes which admit a foliation by spacelike hypersurfaces (see, e.g., Ref.

[2]), but this is not needed in what follows.
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Fig. 1 Electric generator whose physics is similar to the electrodynamics of black holes

in external magnetic fields.

Slightly more specifically, we shall assume that globally M is a product Rx Z,
such that the natural coordinate t of R is adapted to the Killing field k, i.e.,
k = (9t. We decompose the Killing field into normal and parallel components
relative to the "absolute space" (Z, g), g being the induced metric on Z,

,Yt = CX U + 0. (1)

Here u is the unit normal field and 3 is tangent to Z. This is what one calls the

decomposition into lapse and shift; a is the lapse function and 0 the shift vector

field. We shall usually work with adapted coordinates (x4) - (t, x'), where Ix'I
is a coordinate system on E. Let 0'ai ((9i = alax'), and consider the basis

of 1-forms

a dt, dxI +,3'dt. (2)

One verifies immediately, that this is dual to the basis fu, ai I of vector fields
-

Since u is perpendicular to the tangent vectors (9i of Z, the 4-metric has the
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form

(4)g - _C,2 dt2 + g,j (dx' + O'dt) (dx +,3 dt) (3)

where gijdx'dxj is the induced metric g on Z. Clearly, a, 0, and g are all time-

independent quantities on Z.

For what ifollows, I would like to change this setup slightly by using, instead
of 9i and dx

,
a dual orthonormal pair fej I and jVi I on Z. Instead of (2), we

have then the orthonormal tetrad

0
= Oi = 'di0 adt, +,3'dt, (4)

where now O'ei. This is dual to the orthonormal frame

eo = u =
1

at - A ei. (5)
a

The tetrad 10"I describes the reference frames of so-called FIDOs, for fiducial
observers. Their 4-velocity is thus perpendicular to the absolute space Z.

Relative to these observers we have for the electromagnetic field tensor F

(2-form) the same decomposition as in SR:

F = E A 00 + B, (6)

where E is the electric 1-form E = EiO' and B the magnetic 2-form B

- Bjj 0' A Oi. (Ei, Bij are the field strengths measured by the FIDOs.)
In a second step we decompose E and B relative to absolute space and

absolute time. We have, using (5),

E = EiO' = Ei (0' +,3'dt) = S + io E dt, (7)

where

9 = EjV', i. : interior product. (8)

Similarly,

B=B+dtAi,3B, B=
I
Bij V' A Vi. (9)2

Together we arrive at the following 3+1 decomposition of F:

F = B + (a 9 - i,3 B) A dt. (10)

From this the 3+1 splitting of the homogeneous Maxwell equations is readily
obtained: dF = 0 gives

d5 + dt A 9t B + d(a 9) A dt - d(i,3 B) A dt = 0.
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Here d denotes the differential on Z. This gives the two equations

dB = 0, d(a 9) + at B - d(i,8 B)

or, with the Cartan identity L,8 = d o io + io o d,

dB = 0, d(a S) + (Ot - La)B = 0. (11)

The second equation describes Faraday's induction law in a gravitational field.

It will be of crucial importance in later sections. Note, in particular, the coupling
of the B-field to the shift through the Lie derivative.

Let us also decompose the representation of F by a potential, F = dA. We

have, using again (4),

A = A,4 0/' = aAo dt + Ai (& + 0' dt)
(aAo + io A)dt + A, A = Ai Vi.

Thus

A= -Odt +A, (12)

where

(aAo + io A). (13)

This gives

dA = -do A dt + dA + dt A,9t A,

which is of the form (10), with

B = dA, aS = -do - Yt A + io dA. (14)

Apart from the last term, this is what one is used to.

Now, we turn to the inhomogeneous Maxwell equation

d * F = 47rS. (15)

We need first the Hodge-dual of (10). We decompose *F similarly to (6):

*F = -H A 00 + D, (16)

which can be viewed as a definition of H and D. Comparison with (6) shows,
that

H = Bi 0', B, = B23, etc,

D - El 02 A 03 + E2 03 A 01 + E3 01 A 02. (17)
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With (4) we find (* denotes the Hodge-dual on Z)

H = ?i + i,8 W A dt, W *B,
D = D - i,8 D A dt, D *S. (18)

If this is inserted into (16), we obtain

*F = V - (aR + io D) A dt. (19)

The dual J = *S of the current 3-form can be decomposed as in SR

J = PelOO +jk Ok, (20)

where Pei is the electric charge density and jk is the electric current density
relative to the FIDOs. We use them to introduce the following quantities on the
absolute space

P = Pei V1 A & A 03, i = ik ok) *j. (21)

Using the notation if := *0A, we can decompose S as follows

S = Pei'q0+ ik nk
= Pei 01 A 02 A 03 _ (j, 02 A 03 + A 00

= P + Pei (01,02 A 03 + A dt - a (j, & A 03 + A dt.

Thus

S = p + (io p - a J) A dt. (22)

Inserting this and (19) into (15) leads to

d * F = dD + dt A at D - d(a?i) A dt - d(io D) A dt

= 47rp + 47r(i,3 p - a J) A dt,

and hence to the following 3+1 split of the inhomogeneous Maxwell equation

dD = 47rp, d(ali) = ((9t - L,3)D + 47a J. (23)

From these laws one obtains immediately the local conservation law of the
electric charge (use that d commutes with Lo):

(,9t - L,8)p + d(a J) = 0. (24)

This follows, of course, also from dS = 0 and the decomposition (22).
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Integral Formulas

As is well-known from ordinary electrodynamics, it is often useful to write

the basic laws (11), (23), and (24) in integral forms. Consider, for instance, the

induction law in (11). If we integrate this over a surface area A, which is at rest

relative to the absolute space, we obtain with Stokes' theorem (C := aA)

a 9
d

B + Lo B.
c dt 4 A
f

Here, we use L,3 B = d io B (since dB = 0) and Stokes' theorem once more, with
the result

dic a 9
dt fA B+ ic io B. (25)

The left hand side is the electromotive force (EMF) along C. The last term

is similar to the additional term one encounters in Faraday's induction law for

moving conductors. It is an expression of the coupling of B to the gravitornagnetic
field and plays a crucial role in much that follows. This term contributes also for
a stationary situation, for which (25) reduces to

EMF(C) aS io 13. (26)
C

ic
The integral form of the Amp6re-Maxwell law is obtained similarly. Inte-

grating the second equation in (23), we obtain with the Cartan identity LO
d o io + io o d and Gauss' law (first equation in (23)):

(a W + i,3 D) =

d f D+47rf (aj-iop). (27)ic dt A -A

The integral form of charge conservation is obtained by integrating (24) over

a volume V which is at rest relative to absolute space:

d
P (a i,3 P) (28)dt V

fe
V

(note that L,3 p = d 1,3 p).
One could, of course, also derive integral formulas for moving volumes and

surface areas (exercise).

Vector Analytic Formulation

The similarity of the basic laws in the 3+1 split with ordinary electrody-
namics becomes even closer if we write everything in vector analytic form. I give
a dictionary between the two formulations that is valid for any 3-dimensional
Riemannian manifold (Z, g).
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The metric g defines natural isomorphisms 0 and  between the sets of I-

forms, A'(Z), and vector fields, X(Z). In addition, the volume form'q, belonging
to the metric, defines an isomorphism between X(Z) and the space of 2-forms,
A2 (Z), given by

13 = 'f3 'q (29)

We have the following commutative diagram, in which * denotes, as always, the

Hodge-dual:

A' (Z) -4
A2 (_T)

From this one can read off, for instance,

iv,q = *V ('U E X(Z), V : (,U)  ) - (30)

The cross product and the wedge product are related as follows:

A' (Z) x A' (Z) -A-+ A2 (_p)

x(Z) x x(z) -X4 x(z)

In particular, we have

zvxlv 77 = v A w. (31)

With the help of the next commutative diagram one can reduce many of the
vector analytic identities to d o d = 0.

d d 2 (_p)
d 3 00 -* AO (Z)  A'(Z) - 4 A ) A

T i- 17 0 77

curl
;, (Z)

d
0 -+ AO (Z) " X(Z) 'vl AO (Z) -4 0.

We can read off, for example,

icurl V 77 = dv. (32)

For a 1-form w with vector field ig wO,we have the translation

(32) .

iv dw =: Icurl V Zcurl tV 77 = [(curl t6) x vj . (33)
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Here, we made use of the algebraic relation

. . (30) . (31)
z,u z a 77 = zV * u (u A v) = ( a x U)'. (34)

We need also the translation of the Lie derivative of a 1-form w:

(33)
L.U w = d i  r w +iu dw - d( U, i ) + [ (curl ig) x vj

Thus,

L,U w = Igrad (V, ig) + (curl z9) x  Ujb. (35)

Similarly, we have for a 2-form B zg 77:

LV B - Ly iqq Z u d zg 77 + d iy igq

div B 77 (f3 X V)

(32)
= Z { (div f3) V + curl (11 xU)

We have thus the correspondence

L,6 B (div B),U + curl (B x 6). (36)

Here we have to stress that the right hand side is in general not equal to LV B

[6, B] (Lie bracket). This comes out as follows:

L,g B Ly iq q = [L,6, i Ij 77 + i fj L

div V rl

jI (div V) + [,U, f3] 1 71 *

The correspondence (36) is thus equivalent to

Lv 13 Lg B + (divU) B. (37)

Only for div,6 = 0 do the Lie derivatives LV B and LV fi correspond to each

other!

In Maxwell's equations the Lie derivative L B occurs. This will be replaced

in the vector analytic translation by L B, because div is (for a stationary
metric) proportional to the trace of the second fundamental form of the time

slices and this vanishes for maximal slicing. For the Kerr solution we are, for

instance, in this situation (exercise).
Part of what has been said is summarized for convenience in the table below.
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Dictionarv

calculus of forms vector analysis notation

v A w 6 X 19 V (1011 W W),
i rB, iVV .6 X g, f X B 'F3 'q I D'.9'q

df grad f f : function

dv curl  U

dB, dD div.6, div f
L.6 w grad ( U, ig) - V x curl ig W = (1g)

LVB, LVD (div .9),U - curl(V x B), B E

Summary

For reference, we write down once more the 3+1 split of Maxwell's equations
(11) and (23) in Cartan's calculus

dB = 0, d(a S) + ((9t - L,8)B = 0,

dD = 47rp, d(a'h) = ((9t - LO)D + 4,7ra J. (38)

The dictionary above allows us to translate these into the vector analytic form:

'(7 - fi = 0, 1 x (a f) + (at - L ).fi = 0,

'(7 - f = 47rp,,, 1 x (a j) = (Ot - Lg)f + 47ra 3. (39)

3 Black Hole in a Homogeneous Magnetic Field

As an instructive example and a useful tool we discuss now an exact solution of

Maxwell's equations in the Kerr metric, which becomes asymptotically a homo-

geneous magnetic field. This solution can be found in a strikingly simple manner
[3].

For any Killing field K one has the following identity

bdKb = 2R(K), (40)

where 6 denotes the codifferential and R(K) is the 1-form with components

RAvKv. In components (40) is equivalent to

Kl,;';a - -Rpa K. (41)

This form can be obtained by contracting the indices o, and p in the following
general equation for a vector field

(TPA
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and by using the consequence K;1, = 0 of the Killing equation K,;p + Kp;, = 0.
; 0-

For a vacuum spacetime we thus have

6dK = 0 (42)

for any Killing field. Hence, the vacuum Maxwell equations are satisfied if F is a

constant linear combination of the differential of Killing fields (their duals, to be

precise). For the Kerr metric, as for any axially symmetric stationary spacetime,
we have two Killing fields k and m, say; in adapted coordinates these are k = at
and m = (9w .

The Komar formulae provide convenient expressions for the total
mass M and the total angular momentum J of the Kerr BH:

M -

I
*dk , J_

I
*dm (43)87r 167r

(for G
We try the ansatz

F
-

I
Bo (dmb + 2a dkb) (Bo - const), (44)2

and choose a such that the total electric charge

*F (45)47r f.
vanishes. The Komar formulae (43) tell us that

Q -
-

I
Bo (167rJ - 2a - 87rM), (46)87r

and this vanishes if a - JIM (which is the standard meaning of the symbol a

in the Kerr solution).
Clearly, F is stationary and axisymmetric:

Lk F = Lm F = 0, (47)

because (dropping  from now on)

Lk A = dLk k = 0 (Lk k = [k, k] - 0), etc.

For the further discussion we need the Kerr metric. In Boyer-Lindquist co-

ordinates and more or less standard notation it has the form (3), i.e.,

(4)
9 = [-a2dt2 + g,,(d o +,3w dt)2] + [g,, dr2+ ggg dO2 ], (48)

with only the component Ow of the shift being : 0. With the abbreviations

P2 : =: r2+ a2 COS2,0, A := r2- 2Mr + a2, Z2 := (r2 + a2)2 - a2A sin2,0 (49)
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the metric coefficients are

P P2, sin2,ogrr - A I D gW'P P2

_1 +
2Mr 2Mra sin2,o

(50)9tt = 71 9tW P2

while the lapse and shift are given by

2 P2 2Mr
a

_T2.ZA) 3w -a
E2

(51)

This gives asymptotically

(4) 2M 1
2

4aM
- 2 0 + 09 -

r
+0

r2
dt -

r
sin

r
2

dt d p

+ 1+0 [dr2 + r2 (02 + sin2V dCP2)] (52)
r

-

To establish the connection with our general discussion, we introduce here as

orthonormal basis of the absolute space naturally

,gr = ,
W9 = Vg-,9,9 &9, V" =

, `g-,, dr, Ig--ww d p. (53)

The shift vector is 3 = 3 ' Op
The angular velocity w of the FIDOs, with 4-velocity u (at - Ow ap), is

U(P
W gtW

W =

ut
- -0 -

gw o
* (54)

The last equality sign implies that the angular momentum of these (Bardeen)
observers vanishes: (u, m) = 0. The FIDOs are, therefore, sometimes also called

ZAMOs (for zero angular momentum observers).
Now, we want to discuss in detail the solution (44), which we can express in

terms of a potential: F = dA, with

A =

1
Bo (m + 2ak). (55)

2

Let us first look at the asymptotics. The 1-forms k. dx ', m. dxA belonging
to the Killing fields (k,, = gAt, mA = g,,,) are asymptotically k - -dt, m -

r2 sin2t9dW, whence (44) gives

F - BO [sin V dr A r sin V d o + cosO rdO A r sin V dW] (56)

This is a magnetic field in the z-direction whose magnitude is BO.
In (55) we need

m + 2ak = (giw + 2a g,,t) dx" = (gt,, + 2a gtt) dt + (g,,(p + 2a gpt) dw
(54)
= (-wg,,p+2agtt)dt+(g,,-2awg,,)d o.



6. The Membrane Model of Black Holes and Applications 123

Using the notation [1]

-2
W W = sini9 (57)

P

we thus have

[_WCD2 (W2CD2 _ C,2) + Cm + 2ak + 2a ] dt ' 2 (I - 2aw) d p.

Comparing this with (12), we obtain for the potentials

I
[WCD2 (C,2 _ W247BO + 2a ,2)] , (58)

2

A = Aw d o, Av Bo CD2 (1 - 2aw).
2

(59)

The fields S and B can now be obtained from (14). We have

B dA Ap,, dr A d o + Aw,,g 0 A d p

r
 03 A  01W"9 02 A 193 _A V/2j Av . (60)

Z sind ,

L *'91 .192 j

A,, is explicitly (use (59), (57), (54), and (51))

A Bo
_T2

sin219 1 - 4a2
Mr

2 7 _T2

We write this as

sin2,d
( T2 2Bo X, X -Aw =  - 4a Mr). (61)

P22

With this notation, (60) reads

B =

Bo
r * 19'9X"9 *,Or - VAXI I - (62)

2Zsini9 ,

The corresponding vector field J is thus

Bo
- X

r
-

'/
,
V e , /-I X,r et9 (63)2ZsinV

For E we have, with = -w cl,,,

a S - -do + io dA -do + w dAw. (64)

From this one finds quickly

BO aZ Oa2 M sin2 ig
( T2 - 4a2Mr)

r
+

2
P

_
2 Ir Y2Or P C

r

I
+

i9a2 M sin2,d
(_V2 2 19 1

- + r - 4a Mr) ) e,9 (65)  a 2 Otg Z2-aV P
-
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B

E

+ + + + + +

+ + + +

Fig. 2 Field lines of (from Ref. [1]).

The field lines of are shown in Fig. 2.

It is of interest to work out the magnetic flux through the equator of the BH,
i.e.,

fpper h.

16 = fequator A = 27r Aw 1equator (66)

Specializing (61) to V = 7r/2 and r = rH gives (the horizon is located at  A = 0)

 P 47rBO M(rH M) = 47rBO MVIM2 - a2. (67)

Here, we have used

X/M2 2.rH M + a (68)

Note that this vanishes for an extremal BH (a = M). Generically one has, as

2 iE?expected,  P P  7rrHj-.,o.

4 The Horizon as a Conducting Membrane

As long as one is not interested in fine details very close to the horizon, one can

regard the boundary conditions implied by the horizon as arising from physical
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properties of a fictitious membrane. This membrane is thought of as endowed
with surface charge density OH, surface current JH, and surface resistivity RH.
This idea was first pursued by Damour [4] and independently by Znajek [5].
Later it was further developed by Thorne and Mac Donald [6] and other authors

(see [1] and references therein).
Below we give a much simplified derivation that the following surface prop-

erties for the parallel and perpendicular components hold:

Gauss's law : E_L 47r UH ,

Amp6re's law: a.611 BH = 47r JU x A,

charge conservation : a j_L (9t CH H ,

Ohm's law: a fil fH = RH jH - (69)

The surface resistivity RH turns out to be equal to the vacuum impedance

RH = 47r = 377 Ohm. (70)

For the horizon fields EH, BH we have, therefore,

-fiH =: EH X (71)

as for a plane wave in vacuum.

Toward the horizon the FIDOs move relative to freely falling observers, say,
more and more rapidly, approaching the velocity of light. Mathematically, the
tetrad f041 becomes singular at the horizon, and therefore the components of
F relative to f04 1 are ill-behaved. The 2-form. F should, of course, remain reg-
ular and the laws (69) and (70) are just an expression of this requirement. For

illustration, we demonstrate this first for a Schwarzschild BH, and generalize
afterwards the argument in a simple manner.

(a) Derivation for a Schwarzschild BH

The procedure is simple: we pass to a regular, not necessarily orthonormal
tetrad. The angular part 02

- r J0, 03 = r sinV d o is kept, but instead of 00 =

a dt, 0'
-
a-' dr we use dt-, where t is the Eddington-Finkelstein time coordinate

r
Ce-2

2M
t=t+2Mln - _ 1) -4 dt - dt + dr (r > 2M). (72)(2M

r

Since the Eddington-Finkelstein coordinates are regular at the horizon, the same
is true for the basis fdf, dr, 02, 03 }. We have the relations

00 = a df-
1 2M

dr,
a r

01 =
I

dr, (73)
a
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which allow us to rewrite the decomposition (6) as follows

F = E101 A 00 + ... +B301 A 02 + ...

E, dr A di+ E2 Ce 02 A dF -1 2M
02 Adr +E3(...

ct r

+B3 dr A 02 - B2 dr A 03 + B, 02 A 03

or

F = E, dr A A + a E2 02 A di + a E3 03 A df + B, 02 A 03

+
1

B3 +
2M

E2 dr A 02 +
1

_B2 +
2M

E3 dr A 03. (74)
a r a r

The regularity of the coefficients in this expansion implies the following behavior
when the horizon is approached (ct  0):

(i) radial components: El, B, = 0(l),

(ii) tangent components: E2, E3, B2, B3 0
a

(iii) E2 + B37 E3 - B2 = O(a). (75)

This shows that

2),a fil = ii x a B-11 + O(a
f O(C,2)7a.fill = -ii x a Ell + (76)

E, = E_L, B,, = Bj_ remain finite. (77)

This is basically already what was claimed in (69) and (70). It is useful to

introduce the stretched horizon W' = ja = CfH < 11 which is arbitrary close to

the event horizon. Let

fH := (a -911)cH -fiH (78)

and as above

En ii, Bn ii- (79)

These components remain finite for aH  0 and we have up to 0 (Ct2H

fH X JH -9H il X fH (80)

The surface charge density O*H and the surface current density JH on V are

defined by

E,,
O-H BH 47rjH X ii (81)

47r )
W.,
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The second equation and (50) imply Ohm's law in (69)

- 1 -

JH = -EHi RH = 4,7r. (82)
RH

Finally, we make use of the Amp6re-Maxwell law (39) (for 0):

o9t E -- V x (a B) - 47r a

The normal component on V is

i9t E, - [1 x (c,.fi)] 47r a In

Using

X (Ct "11) x (47r jH x il)] 47r H ,

where (2) denotes the induced covariant derivation on V, we obtain

(9t OH + H + (a jn)W-1 = 0, (83)

as an expression of charge conservation.

This completes the derivation of (69) and (70) for the Schwarzschild BE

Next, we generalize the discussion to an arbitrary static BE

(b) Derivation for static BH

We introduce first a parameterization of the exterior metric which was used
also in Israel's famous proof of the uniqueness theorem for the Schwarzschild
13H.

The starting point is (3) for 3 = 0, i.e.,

(4)9= _Cf dt2
+ g, a and g independent of t. (84)

Note that a
2

- (k I k) > 0, k = i9t, and that the horizon has to be at a = 0.
We assume that the lapse function has no critical point, da  4 0. The absolute

space Z is then foliated by the leaves ja = constj. The function

p:- (dajda) 2 (85)

is then positive on Z.

Now we introduce adapted coordinates on Z. Consider in any point p E Z
the 1-dimensional subspace of Tp(Z) perpendicular to the tangent space of the
leave ja = constj through p. This defines a 1-dimensional distribution which is,
of course, involutive (integrable). The Frobenius theorem then tells us that we

can introduce coordinates fx'j on Z, such that XA (A = 2, 3) are constant along
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the integral curves of the distribution. For x we can choose the lapse function,
and thus obtain

g = P2dC,2 +  ABdxAdXB. (86)

Here, p and AB depend in general on all three coordinates x
1
= a, xA.

We also need the surface gravity r, on the horizon. A useful formula is (see,
e.g., [7])

2 (dk I dk) IH* (87)
4

Now, k = -a2dt, dk 2a da A dt, whence

K -
1

* (88)
PH

F'rom the zeroth law of BH physics we know that K - const. Since we want to

assume a regular Killing horizon (generated by k), we conclude

0 < PH < 001 PH = const. (89)

Combining (84) with (86) we have outside the horizon

(4)
g = -Ndt2 +

P dN2
+ N := a2. (90)

4N

The natural FIDO tetrad is

00
- VN dt,

0' = P
- dN,

2VN_
OA (A = 2,3): orthonormal 2-bein for (91)

This becomes again singular at the horizon (N = 0).
Now we imitate what we did for the Schwarzschild BH. We search for a basis

of 1-forms which is well-defined in the neighborhood of the horizon. Guided by
(72) we introduce

#t =- dt +
P
dN (92)

2N

and rewrite (90)

(4)
g - -N(Ot )2 + p#t dN +  .

Thanks to (89) we conclude that

I #t, dN, OA (A = 2,3)1 (93)
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remains a regular basis on the horizon. Outside the horizon we can express (91)
in terms of this basis:

00 = VN #t P- - dN,
2.\IN

01 = P
-

dN. (94)
2VN__

We can now proceed as in the derivation of (74), obtaining now

p El -

02 A 6t
-

03 A #t 02 A 03F =

2
dN A #t + VN_E2 + VNE3 + B,

+ P- (E2 + B3) dN A 02 + P
- (B2 - E3) dN A 03. (95)

2 v/N__ 2VN

This implies again the limiting behavior (75) for the normal and parallel com-

ponents of the electric and magnetic fields.

(c) Derivation for rotating BHs

Finally, I give a similar derivation for rotating BHs. (This was worked out in

collaboration with Gerold Betschart in the course of his diploma work.)
I first need the Papapetrou parameterization of a stationary, axisymmetric

BE Since this will be treated in detail in the lectures by Markus Heusler [7], 1

can be brief.

Since the isometry group is R x SO(2) we have two commuting Killing fields

k and m, say, which are tangent to the orbits belonging to the group action. We

assume that k and m satisfy the Frobenius integrability conditions

k A m A A = 0, k A m A dm = 0. (96)

The Frobenius theorem then guarantees that the distribution of subspaces or-

thogonal to k and m is (locally) integrable. I recall that (96) is implied by the

field equations for vacuum spacetimes and also for certain matter models (elec-
tromagnetic fields, ideal fluids, but not for Yang-Mills fields).

In this situation, spacetime is (locally) a product manifold, M =: Z x 1',
where Z = R x SO(2) and F is perpendicular to Z. Thus the metric splits

(4)
9 - a + 9 (97)

such that o, is an invariant 2-dimensional Lorentz metric on Z, depending, how-

ever, on y E r, and the fact that (r, g) is a 2-dimensional Riemannian space. In

adapted coordinates

X/I : X0 = t' x
1
=  o for Z; X2, X3 for F, (98)

we have

k = at, M = 19 01 (99)
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and

a = 0ab dXa dxb, g = gij dx'dxj, (100)

where a, b - 0, 1 and i, j = 2, 3. The metric functions 0ab and gij depend only
on the coordinates xi of F.

The following functions on F have an invariant meaning

-V := (k1k), W :- (k1m), X := (MIM), (101)

and we have

2 2-V dt + 2W dtd p + X d p (102)

We use also

W
(103)P:= VX + W2 A :-

X)

in terms of which (102) takes the form

Cr
P dt2 + X(dV + A dt)2. (104)
x

It turns out that the partial trace Ra of the 4-dimensional Ricci tensor is
a

proportional to (9).,Ap and p is thus a harmonic function on F, whenever Ra
a

vanishes. This is of course the case for vacuum manifolds, but also for the Kerr-

Newman solution, and in some other cases [7]. With the help of the Riemann

mapping theorem one can then show that p is a well-defined coordinate on (F, g)
(p has no critical points). It is then possible to introduce a second coordinate z,
such that

g e2h (dP2 + dZ2). (105)
x

In terms of t, V, and the Weyl coordinates p, z, (4)g assumes the Papapetrou
parameterization

(4)
9-

P2. dt2+ X (d p + A dt)2 +
e2h

(dP2 + dZ2). (106)
x x

We emphasize once more, that the functions X, A, and h depend only on the

Weyl coordinates p and z.

The weak rigidity theorem tells us that on the surface on which

 = k + S?m, S? = -A = -WIX, (107)

becomes null, 0 is constant and  is a Killing field on this surface, denoted by
H[ ] in what follows. In addition, H[ ] is a stationary null surface, in particular
a Cauchy horizon. (For proofs, see [7].)
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Note that  , as a 1-form, can be expressed as

P dt. (108)
X

One also knows that X is well-behaved on the horizon

X = 0(l), X-1 = 0(l) on H[ ] (109)

(see [8]). Since ( J ) := -p2lX the horizon is at p = 0 (as is well-known from

the Kerr solution).
Although  is not a Killing field, the weak rigidity theorem implies that the

surface gravity is still given by

K2 (d <) I H[ ] (110)
4

(A priori, the formula holds for I := k + OHM, f2H = QJH[ ], but dS? = 0 on

H[ ].) From (108) we obtain

< -

-

2p
dp A dt - p2 d

I
A dt.

X X

Using the scalar products (dpldp) = Xe-2h, (dtidt) = _Xlp2, (dpidt) = 0 gives
thus, together with the zeroth law,

r. = e-hl H[ ] - const 54 0. (111)

The reader should verify that this gives the correct result for the Kerr solution

rH - M
(112)

2MrH

After these preparations, our argument proceeds similarly as in (b). The

natural FIDO tetrad JPJ for (106) is (N p2)

-

N
-

e 02 e 03rN00 Xdt, 01

2v X__N
dN,

VY
dz, = v/X(d o + A dt) -

(113)

Clearly, 00 and 01 are again ill-defined on the horizon N = 0. We therefore pass
over to a new basis

#t := dt +
e

dN, dV + f2
e

dN, (114)
2N 2N

together with dN and dz. In order to check whether this new basis remains valid

when the horizon is approached, we express the metric (106) in terms of it. Since

00 =  N #t
e

dN, 03 = v/X (#" + A (115)YX 2 -\I_XN
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we find readily

eh e2h
(4)g = _V(#t)2 + 2W VP + X(#W)2 + VdN Z2. (116)

X
+ y d

The determinant of the metric coefficients in this expression is e
4h

and thus4X2'
remains regular, thanks to (108) and (110). Since we postulate a regular horizon,
it is then clear that 10', 0'-0, dN, dzj indeed forms a well-defined basis also on

the horizon.

It is now straightforward to express the Maxwell 2-form F in terms of this

basis. Instead of (96) we obtain now

F = El
eh

+
Aeh

(E3 - B2) dN A Ot + E3 VIN P A 6t
2X 2v N

h hA #t
e

- E3) dNA PE2e
X
+ Ble A dz A + - (B2

2vW_X

+Bjeh dz A P -

e2h- (E2 + B3) dz A dN. (117)
2X,\IN

Since a is the lapse function, we obtain once more the limiting behavior
V X

(75), and thus the basic membrane laws (69) and (70).

5 Magnetic Energy Extraction from a Black Hole

As an interesting, and possibly astrophysically important application of our basic

laws (38) and (69) 1 show now that it is possible, in principle, to extract the

rotational energy of a BH with the help of external magnetic fields. In the next

section, we will work out some of the details for an ideal gedanken experiment.
This will serve as a preparation for an understanding of the Blandford-Znajek
process.

Our starting point is Faraday's induction law (25) in integral form, which we

write down once more

EMF(C)
d

B + io B. (118)
dt A

fcf
For stationary situations this reduces to

EMF(C) = ic i,3 B- (119)

In Fig. 3 we consider a stationary rotating BH in an external magnetic field

(like in 3). The integral in (119) along the field lines gives no contribution and
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Z 

Fig. 3 Arrangement for eq. (119).

far away 0 drops rapidly (- r-'). Thus, there remains only the contribution

from the horizon (CH) of the path C in Fig. 3:

EMF - fC
H

',8H 131 OH -::- - S?H aW S?H CDH e,, (120)

(only the normal component fij- contributes). I recall that f2H - a(2MrH)-1,
rH z--: M + VM2 - a2.

We shall show in section 6 that it is possible to construct a generator such

that (with optimal impedance matching) a maximal extraction rate equal to

I (EMF)2
(121)

4 R(CH)

becomes possible, where R(CH) is the horizon ("internal") resistance

R(CH) := RH
dl

RH = 377 Ohm. (122)fC
H

27r Cv'

(It should be known from electrodynamics, that we have to divide the surface

resistivity RH by the length of the cross section through which the current is

flowing.) We shall also show that an equal amount of energy is dissipated by
ohmic heating at the (stretched) horizon.

Let us work this out for the special case of an axisymmetric field: La, B
0 ++ dia, B = 0, whence

ia, 13 - -

d
(123)

27r
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From this we conclude that B can be expressed in terms of two potentials T1 and

91

dTlAdW+ g*dW (124)
27r

poloidal part
toroidal part

both of which can be taken to be independent of W. This is equivalent to the

vector formulae

pol
1 - tor9fl --

27r CD
VT" X IFW' fi=CO IFW (125)

(Exercise). T-1 is the magnetic flux function (see Fig. 4), because the poloidal flux
inside a tube IT-, - constj is

fB =f dTI = TI, T'(O) = 0. (126)

IP is constant along magnetic field lines, as should be clear from Fig. 4. Formally,

netic flux function

const.

Fig. 4 Axisymmetric magnetic field. The total flux inside the magnetic surface defines
the flux function T,.

this comes about as follows:

i j3- dTl = * (* dTl /\ B) (dTf A *B) (dTI A B)
(124)
= g * (dT/ A *d o) = 0,

thus < dTl,. >= 0.
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For the closed path C in Fig. 5 the EMF is by (120)

(123) S?H
EMF =- LV - fC

H
27r fCHd!P,

i.e.

LV
S?H

'L T". (127)
27r

\P 4-

Fig. 5 Integration path for the voltage in eq. (127).

The internal resistance (122) becomes

LRH = RH
Z i

(128)27rW-

Since, on the other hand,

A P 27r cD B I Al, (129)

we find, by eliminating Al,

z ,RH RH
AT1

(130)47r2 CD2 B,

Inserting (127) and (130) into the expression (121) for the maximal power output
gives

1 (Z V) 2 f22
-

-

_

H CD2 B-L ATI. (131)4 ARH 16 7r
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This, as well as (127), have to be integrated from the pole to some point north

of the equator (see Fig. 6). For the exact solution in 3 we know the result for

the EMF, if we integrate up to the equator: From (127) and (67) we get

1
EMF -

- S?H 47r BO M (rH - M)
2 7r

or (S?H al2MrH)

EMF aBO
rH - M (rH M + VM2 - a2). (132)

rH

Fig. 6 Plausible structure of the magnetic field close to a supermassive BH which is

surrounded by an accretion disk (central engine of a quasar) (adapted from Ref. [1]).

For a general situation, like in Fig. 6, we have roughly

2 C
r2

',2 HZ ATI = TI - B_L 7r rHi" _ < CD2 > _2
and we obtain, by (131), for the power output

P -

1 ( a )2 B2 r2
128 M I H

- (10" erg/s) ( a )2 (M
2

B-L
2

(133)
M log Me 104 G)

The total EMF is (V = ZAV)

v -

1
RH T1

a
B_L ir r2 a) MB-L (134)

27r 27r 2MrH H 2 M
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(compare this with (132)). Numerically we find

V _ (1020 Volt) ( a ) M B_L
(135)

M 109 Me 104 G

For reasonable astrophysical parameters we obtain magnetospheric voltages V -

1020 Volts and power output of the magnitude - 1045 erg/s. This power is what
one observes typically in active galactic nuclei, and the voltage is comparable to

the highest cosmic ray energies that have been detected.

Note, however, that for a realistic astrophysical situation there is plasma
outside the BH and it is, therefore, not clear, how the horizon voltage (135) is
used in accelerating particles to very high energies.

Let us estimate at this point the characteristic magnetic field strength than
can be expected outside a supermassive BH. A measure for this is the field

strength BE for which the energy density B2/87r is equal to the radiation energyE

density UE corresponding to the Eddington luminosity

LE -:: 
47rMHmpe

_ 1.3 x 1038 (erg/s)
M

(136)
O'T MO.

The relation between LE and UE is

= 47rr2 C
7rr2 r -

G M
(137)LE 9 4

UE
g CUE 9 C2

Thus

1
-B2 4 mpc

2

(138)8 7r
E

07T

giving (MH,8 = MH/108 M(D)

BE = 1.2 x 105 M 1/2 Gauss. (139),8

For a BH with mass - 109 Me inside an accretion disk acting as a dynamo, a

characteristic field of about 1 Tesla (104 Gauss) is thus quite reasonable.

6 Rotating BH as a Current Generator

Before we come to realistic possibilities of energy extraction, we analyze in detail
an idealized arrangement, sketched in Fig. 7.

We compute first the EMF around a closed path consisting of the following
parts: We -,tart from the equator of the (stretched) horizon along a perfectly
conducting disk, which is supposed to rotate differentially in such a manner,
that all its pieces are at rest relative to the FIDOs (they have thus zero angular
momentum). From the boundary of the disk, the path continuous along a wire

and through a resistive load (RL) to the top of a conical conductor. Then we
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Resistance of

external load

Fig. 7 An idealized current generator (adapted from [1]).

move down to its tip at V = ?90 close to the north pole of the membrane, and

finally down the horizon in the poloidal direction to the starting point. (The
conical surface is chosen instead of an infinitely thin wire in order to avoid

divergent integrals; it replaces a wire of finite thickness.)
The ideally conducting disk gives no contribution to the EMF. Formally this

comes about as follows: The 4-velocity field of the disk u (whose parts move

with the FIDOs) is eo (see (5)) and thus -i,, F = E = 0, for an ideal conductor.

Using (7), this implies.6 = 0.
The contribution VL to the line integral f a E from the load resistance far

from the BH is what we all know from electrodynamics

VL = IRL, (140)

where I is the current in the wire.

There remains the contribution VH to the EMF along the stretched horizon

(Ohm)
VH = fC

H

ag = fC
H

RH * JH (141)

The current flows along the northern hemisphere of the horizon as a surface

current in the poloidal direction, with surface current density

I
-

27r CDH
eq (142)

In order to prove that the surface current jH has no toroidal component, we

apply (119) to a toroidal path 1?9 = constj on the stretched horizon. Along this
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i,3 B = -d!P/27r = 0, and thus

f aoF = 0 == i,9, 46H = 0 : fH e, 0.

Ohm's law in (69) then implies e, = 0.

Using (142) in (141) gives
7r

VH = I fRH -

PH dOfV
o

27r CDH

or

VH I RHT, (143)

where

RHT = f 2

RH
PH d?9

 00 27r CDH

is the total resistance of the horizon (see (122)). The EMF around our closed

path is thus

V = VH + VL = I(RHT + RL). (144)

This voltage is also equal to the line integral on the right hand side in (119),

V = ic i,8 B. (145)

This receives only contributions from the horizon and the disk (the contribution
of the latter was overlooked in Ref. [1]). Using 3 = -w o9w) B, = Br V9 A 'OV,
&9 = p 0, t9W = cD d(p, the horizon gives

2

1,8 B = DH
r

B-L CDH PH dd. (146)
CH )t9o

A similar contribution is obtained along the disk (CD) and the total voltage is

given by
7r

V = flH f B-L COH PH 0 - f
rD

B, WW-
P dr (147)

go rH

(rD is the edge of the disk) This "battery" voltage', and the total horizon and

load resistances RHT and RL determine the current I according to (144).

The part of the integral (145) from the disk is independent of the connecting path,
because the induction law gives d(a S - ia B) = 0 and thus d (ia 5) = 0 inside the

disk.
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If the magnetic field is axisymmetric, we can use (123) to write the integrand
in (145) as follows

io B dT1. (148)
2 7r

The voltage is then

V =

J?H
 P (eq) 1 + f

edge
d (149)

2 7r h VH- !P (eq)horizon

where T/(eq) denotes the value of the flux function at the equator of the horizon.
The two pieces in the square bracket are comparable in magnitude.

We shall see in the next section in detail how the power, dissipated as ohmic
losses

J2P R (150)

in the load, is extracted from the hole, but this is clearly at the cost of the mass

of the BH:

J2 RI, (151)

Let us note that

PL = V2
R1,

(152)(RHT + R.L ) 2

This becomes maximal for

RHT = RL (impedance matching) (153)

with

pmax -

V2
L 4 RHT (154)

This maximal extraction rate was stated in (121).
Clearly, we can also reverse our gedanken experiment. By applying a voltage,

we can use the BH as the rotator of an electric motor (see Fig. 8). You see that
some of the physics of BHs is indeed very similar to that of ordinary electric
generators and electric motors.

7 Conservation Laws, Increase of Entropy of a BH

The general results which will be obtained in this section will enable us to develop
a more profound analysis of the idealized current generator discussed above.
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B

Fig. 8 Black hole playing the role of the rotator of an electric motor.

Contraction of the energy-momentum tensor TA' with the two Killing fields

i9t, a,, gives two conserved vector fields, which express the conservation laws of

energy and angular momentum in the z-direction. We want to formulate these

in the 3+1 splitted form.

To this end, we consider as a preparation a 4-dimensional equation of the

type

V - i Q (155)

for a vector field J with source term Q. The Hodge dual of the 1-form P has

the same decomposition as S in (22):

*J = p + (i,3 p - a J) A dt. (156)

If J = Pe., then p is the 3-form belonging to P, and J is the 2-form corre-

sponding to j = jkek. Eq. (155) is equivalent to d (*P) = Q V014 or

dt A [(at - L,3)p + d(a Q V014- (157)

Since dt 00/a, the 3+1 split is

(c9t - LO) p + d(a CC Q V013- (158)

If div 0 (as for the Kerr solution), this is equivalent to (P V013)

(at - L )  + 1 - (ct j) = a Q. (159)
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The integral form

d f P f i,3 P) + f Ci Q V013 (160)
.L 9dt V VV 9 L

generalizes the conservation law (28). We also write (160) in vector analytic form

d f  dV f (aj-  j) - d.X+ a Q V. (161)
dt V 9 V

fV
Let us now apply this to the vector fields k.TA' and m,TAI (k m

,9,). The corresponding and are denoted as follows

-k T (CE_ , E_)
m T (162)

Eq. (159) gives

(at - Lj) -FE_ + (a E_) 0 (Poynting theorem), (163)

(,Ot - Lg) -FL. + (a Lj 0 (angular momentum conservation), (164)

The corresponding integral formulas are

d
-FE_ dV = - f E_ - -FE_ dl, (165)dt fV

V
(a

,9

d
EL. dV = - f L_ - EL. dlo (166)dt fV

OV
(Ci

r9

Now we make use of (5), i
. e., c9t = a eo - w a eo - w CD e-, , giving us

-k - T = -a eo - T + w m - T.

Here we use the following FIDO decomposition of T:

T = E co 0 eo + eo (9 + 0 eo+ T, (167)

and obtain the relations

EE_ = a E + LO -Lz (energy density "at infinity"), (168)
E_ = a 9 + W (energy current density "at infinity"). (169)

Application to a Kerr BH

The global conservation laws (165) and (166) are now applied to a Kerr
BH. Its mass plays the role of the "energy at infinity" and thus, the energy
conservation (165) with (169), gives

dM --f allE_oi!dA=-f (a2 + aH flH L.) - ii dA. (170)Hdt 'R. W.,
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Similarly, the change of the angular momentum of the BH is by (166)

V
_
_

- - - 4-+

aH SL. - il dA; SLz = i9w- T - (171)dt 'H.

Now, we consider the entropy increase of the BE The first law [7] tells us

that

TH
dSH

-

dM
- S?H

V
(172)

dt dt dt

On the right hand side we insert (170) and (171), and use also (169), giving us

the generally valid formula

dSH
- a

2 it dA. (173)TB
dt

-

W.
H S

Until now we have not specified the matter content. For electrodynamics we

have q = --L P x J, and thus at the horizon a2 = 1 PH x JH (see (78)). In
41r H 41r

this case we obtain with the laws of Ampere and Ohm

dSH 1 -2TH - (PH X -fiH) - il dA 7H - EHdA RH JA dA.
dt 47r

(174)

All of these familiarly looking expressions for the rate of entropy increase are

important and useful.
Let us also evaluate (171) in a similar manner. First, we have

(fl2 + j2SL 0.9 +.6 0.6) +  9 (175)
47r 2 )

Clearly, only the first term contributes to the integrand in (171). Using this time

the laws of Gauss and Amp6re, we find

V (OH PH + A X -fin) - jw dA. (176)
dt

Note that the first term is absent if 9H has no toroidal component.
Finally, we use (172), together with (174) and (176), to obtain the following

formula for the change of the mass of the BH

dM
-

- f,
.

HJ'fH -  H * (UH EH + A x Jn) ] dA. (177)
dt W.

[j
Application to the Idealized Current Generator

It is instructive to use these general results for a more detailed analysis of
the current generator, discussed in the last section.
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We begin by computing the ohmic heating rate of the current flowing through
the northern hemisphere (n.H.) of the BH:

fH - YH dA EH JH 27r Co PH dt9f..H. f,9"
(142)

1 f 2 (143) J2EH PHO=IVH RHT (178)
90

According to the general result (174) this rate is equal to TH dSHIdt. Thus,

TR
dSH P RHT- (179)
dt

In order to trace the details of the energy flow, we apply the generalized
Poynting theorem (165). For a stationary situation this reduces to

fV dA = 0. (180)
,9a

We choose the volume V such that the boundary o9 V consists of a horizon part
AH (W' minus the inner edge of the disk), the disk AD, and a surface AL
enclosing the load's resistor (see Fig. 9). The second term in (180) does not

contribute for AH and AD, and can be ignored for the load, since this is assumed

to be located far from the horizon. Using also the relation (169) we have then

ct E - dif = 2+ awL -d.X=O.
av

faV(a (181)f
The contribution from the horizon to the first term on the right is

2. (173) dSH (179) 2fA
H

a ii dA = TH
dt

= I RHT (182)

and the second term gives

- S?H CtH L , - il dA. (183)
AH

At first sight one might think that this is just f2H 4-J (see (171)). This is, however,dt

not correct, because there is an additional inflow of angular momentum through
the disk. Physically, this is clear: The external magnetic field exerts - through
the Lorentz force on the surface current jD of the disk - a torque on the disk,
and thus on the BH to which the disk is locked. As in the derivation of (176) we

find for (183)

S?H fAHciH L ii dA = S?H fAH CDH jH x e,, dA

7r 711

S?H JH B
(142)

_I S?H f - 

-L CDH 27r CDH PH dV B i CDH PH d?9,
,90 t90
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RL

n

AL

A,,

n

t

Fig. 9 The boundary aV AH U AD U AL for (181)

where use has been made of the fact, that fH has no toroidal component. To-

gether with (146), we obtain for this horizon contribution

- S?H fA
H

aH L_, - il dA = -I fC
H

io B. (184)

Note that the integral on the right is not the total voltage (145). However, we

shall see shortly that the disk contributes the remaining part of -IV
-

Only the last term in (181) gets contributions from the disk (since 0 in

this becomesthe disk). Using the expression (175) for L,,,

B,
a w il dA a c4) - j,, - J 27rcD dl. (185)

AD
fC

D
47r

Between the parallel component fill and the surface current jD of the disk we

have Amp6re's relation of ordinary electrodynamics:

I
- -

a B11 = 4n JD x A = 47r- e, x n. (186)
27r cD

Making use of this, (185) becomes

a w L A dA -1 f (,Fr X in) dl If x fi,) drf
AD CD CD

or

(187)-f awL -AdA=-f i,8B,
CAD D

as already announced.
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Finally, the contribution to (181) is what we are used to:

-1 - - I= J2a E_ - df = - (E x B)d RL. (188)fAL fAL 47r

All together, the Poynting theorem (181) gives

PRTH - I i,3 B - I i)3 '6 J2RL (189)fc
H

fC
D

load

hori,,on disk

From the derivation it is clear how to interpret this result. First, we note

that the left hand side is the energy (measured at infinity) which flows per unit

time into the BH, and thus is equal to dMIdt. According to (179) the first

term is TH dSHIdt (ohmic dissipation). The second term in (189) is that part of

f2H dJldt which is due to the torque acting on the surface current density JH (see
(171) and (176)). The third term resulted from the disk and gives an additional

contribution to the change of the rotational energy, which flows through the disk

into the BH. For clarification we note that for a closed surface A surrounding
the disk we have

a E_ - d.X = 0 a w d.X,f
A

fA
since 9 vanishes in the disk. Therefore, the rotational energy which flows through
the inner edge of the disk into the BH is (see (171))

(187)
S?H f,Ia L. - df fAD a W SL - - il dA -

- fCDio B.

The total change of the rotational energy of the BH thus is

V
= -PH I i,3 B

(1")
-1 V

dt C

(144) 2
= -I (RHT + RL) (190)

The presence of the disk made the discussion a bit complicated, but it is nice

to see how the various pieces combine. Schematically, we have

dM
- TH dSH + S?H dJ

dt dt dt

il 11 11 (191)
_J2RL J2RHT _J2 (RHT + RL)

The energy (at oo) dMIdt flows - partly through the disk - down the hole and

is, of course, negative because the spin down overcomes the ohmic dissipation.
This part of the energy balance results, therefore, in an outflowing energy which

is carried without loss by the electromagnetic fields to the load resistors, where

it is dissipated at the rate 12RL. Netto, we obtain, of course,

dM
= J2 RL. (192)

dt
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8 Blandford-Znajek Process

Let us return to Fig. 6, in which a plausible magnetic field structure around

a supermassive BH in the center of an active galaxy is sketched. Rotation and

turbulence in an accretion disk can generate magnetic fields of the order I tesla,
as we estimated at the end of section 5.

Close to the BH one expects a force-free electron-positron plasma, which

comes about as follows. Imagine first that there are no charged particles in the

neighborhood of the hole. In this case unipolar induction generates a quadrupole-
like electric field similar to that we found in section 3 (see Fig. 2). Close to the

BH the magnitude of this electric field is E - B alM - 3 x 106 (Volt/cm) (alM).
Between the horizon and a few gravitational radii along the magnetic field lines

this gives rise to a voltage V - E rH - B a - 1020 Volt for a BH with mass

M - 109 MG (see section 5). In this enormous potential stray electrons from
the disk or interstellar space will be accelerated along magnetic field lines to

ultrarelativistic energies. Inverse Compton scattering with soft photons from
the accretion disk leads to 7-quanta which in turn annihilate with soft photons
from the disk into electron-positron pairs. These will again be accelerated and

by repetition an electron-positron plasma is generated which can become dense

enough to annihilate the component of E along B. The electric field is then nearly
orthogonal to fl, up to a sufficiently large component which produces occasional
electron-positron sparks in order to fill the magnetosphere with plasma. (Similar
processes are important in the magnetospheres of pulsars. It is likely that all
active pulsars have electron-positron winds.)

Fields with f - fi
- 0 are called degenerate. We assume in what follows that

in the neighborhood of the BH, where the fl-field is strong, the electromagnetic
field is force-free, which means that the ideal MHD condition

Pef +3"X fi ::::-- 0 (193)

is satisfied. Clearly, in a force-free plasma E is perpendicular to B. Furthermore,
f has no toroidal component for an axisymmetric stationary situation. This is

an immediate consequence of the induction law: Applying (25) for a stationary
and axisymmetric configuration to the path C in Fig 10, we obtain

(123) 1ic a S = ic jo L3 -

2,7r JC dTl = 0 ===, ftor
- 0. (194)

Similarly, Amp6re's law in integral form (27) reduces to

ic a7i = 47r fA a J = 4,7r 1, (195)

where I is the total upward current through a surface A bounded by C. This

gives for the toroidal component of the magnetic field

21
_.fitor =a cD e o (196)
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const.

Fig. 10 Path for (194) and (195).

Using this in (124) gives

13 dT/ A 4 +
21

* 4. (197)
2 7r a

poloidal toroidal

to

For later use, we also note the following: The continuity equation (24) reduces

d (a 0. (198)

Moreover, La, (a 0, we have d (io, a 0, thus

i,q, (a dI (199)
2 7r

or

a JPol dI A dW. (200)
2 7r

Clearly, the potential I is the current in (195).
Because 9 is poloidal, we can represent the electric field as follows

'6 (201)(9 F X J)

where VF is toroidal. Let us set

VF (OF (D 4p (202)
a
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For the interpretation of OF note the following: For an observer, rotating with

angular velocity fl, the 4-velocity is u = ut (,9t + Q i9,,). On the other hand, u

-y (eo + U), where 6 is the 3-velocity relative to a FID0 - Using also at - a eo +

we get S? a,6 - or

(S? - W) (De". (203)
a

This has the same form as (202) and, therefore, OF is the angular velocity of

the magnetic field lines.

Next, we show that OF is only a function of T1. The induction law gives

d(a E) = L,8 B - -L,,g, B = -w Lq, B - dw A iq, B
I
dw A dTI.

2 7r

On the other hand, (201) and (202) give

d(a S) d(a B) d ((J?F W) B) d
OF

dTI
2 7r

- -d
OF

A dTI.
2 7r

By comparison, we get df?F A dTf = 0 === S?F OF (TI). The calculation above
also shows

a S -

S?F
(204)

2 7r

i.e., f is perpendicular to the surfaces ITI = constj.
Specializing to the horizon gives

fH = - (OF - flH ) (D IFW X (205)

The representations (197) of B, and (204) for E will be important in the final
section 9.

Now, we proceed as earlier in section 5 and consider again the closed path C
in Fig. 11.

We already had the relations

'  V S?H ZWli (206)
2 7r

and

ARH - RH (207)
4 7r2 CD2 B
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Fig. 11 Magnetosphere of a rotating BH (adapted from [1]).

(see (127) and (130)). As in (143) we obtain for the horizon voltage

AVH = I ARq- (208)

This contribution can alternatively be computed with (204):

AVH = a 6 =

f2H - OF
A!P. (209)fC

H
2 7r

The total voltage AV of C is the sum of AVH and the voltage drop AVL in the

astrophysical load region (see Fig. 11). For the latter we obtain from (204) (since
W -- 0)

AVL
1

S?FL!k (210)
27r

and, of course, also

AVL = IARLi (211)

where ARL is the resistance of the load region. From this equations, and

AV = AVH + AVLi (212)

-* P P
B
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we immediately find the relations

 VL S?F
-
-

ARL
(213)

 VH QH - f?F ARH'
AV

=

1
(QH - S?F) C7,2 B-L (214)

ARH + ARL 2

The ohmic dissipation at the horizon is as in (179)

TH
d (ASH) J2 ARH = I AVH

dt

(flH - S?F )2
4 7r

CD2 Bi- ATI. (215)

The power APL deposited in the load is thus

AP
(210),(214) S?F (f2H - S?F) CD2L = J2 ARL = I AVL

4,7r
B-L AT. (216)

As in (153), APL becomes maximal for ARH ARL, which is the case for (see
(213))

flF flH (217)
2

Then the estimates (133) and (135) hold.

Whether the crucial condition (217) is approximately satisfied in realistic

astrophysical scenarios is a difficult problem for model builders. Therefore, the

question remains open whether the process proposed by Blandford and Znajek
[9] is important for the energy production in active galactic nuclei. It could,
however, play a significant role in the formation of relativistic jets.

In this connection it should be mentioned that the Blandford-Znajek process

may play an important role in gamma-ray bursts, as has been suggested, for

instance by M&ziros and Rees [10]. One of the proposed models involves the

toroidal debris from a disrupted neutron star orbiting around a BH. This debris

may contain a strong magnetic field, perhaps amplified by differential rotation,
and an axial magnetically-dominated wind may be generated along the rotation

axis which would contain little baryon contamination. Energized by the BH via

the Blandford-Znajek process, a narrow channel Poynting-dominated outflow

with little baryon loading could be formed. The latter property is crucial for

explaining the efficient radiation as gamma rays. (For a review of this topic, see

for instance [11].)

9 Axisymmetric, Stationary Electrodynamics,
of Force-Free Fields

In this concluding section we discuss the electrodynamics of force-free fields

around a BH a bit more systematically. The main goal is to derive the gen-
eral relativistic Grad-Shafranov equation, whose nonrelativistic limit plays an

important role in the electrodynamics of pulsars.
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For stationary fields, Maxwell's equations (38) become

dB =0, d(ag) =LOB, (218)
d * S = 47rp, d(a * B) = 47raj - L,3 (219)

From now on we assume also axisymmetry. Then L,3 p = d i,3 p = 0, and hence

the continuity equation (24) reduces to

d (a J) = 0. (220)

1 recall the representation (197) of B in terms of the potential T1 and I:

1
&P A d o +

21
* dv. (221)

2 7r a

Tf and I are independent of V; their physical significance has already been dis-

cussed: Using the notation in Fig. 10 we have

T1 = fA B, I = fA a (222)

At this point we make the simplifying assumption that the ideal MHD con-

dition (193) holds everywhere. The fields are thus force-free, and we know from

section 8 that the 9-field is poloidal and can be represented as (see (204))

a S
OF - W

dTf, (223)
2 7r

The representation (200) of the poloidal current

a JP" =

1
dI A 4. (224)

2 7r

was obtained without assuming the ideal MFD condition. But if this is assumed,
the toroidal part of x .9 in (193) has to vanish, which means that JP01 andj
SP" are proportional to each other. Comparison of (221) and (224) shows that

dI must then be proportional to dTI, thus I is a function of Tz alone:

I = I(IP). (225)

We have shown already in section 8 that OF is also a function of T1,

OF = S?F(Tf). (226)

According to (221) and (224) we now have

jP01 _
1 dI

Bpol. (227)
a dTI
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The total current j can now be represented as

I dI -

I = P, VF +
a dT1

B. (228)

In view of (227), the poloidal part of this equation is certainly correct, and the

toroidal part on the right hand side is chosen such that j x B = p,,6F x B = -p, E

(see (201)), which is just the ideal MFD condition.

Our goal is now to derive - for given functions (225) and (226) - a partial
differential equation for the potential T1. We shall achieve this by computing the

toroidal part of the current in two independent ways. First, we take the toroidal

part of (228) and obtain with Btor - 2 1 (see (221))
a (D

por = Pe OF-WCD+ 1 dI 21

a a dT1 ct cD

Here, we also eliminate Pe: Rom (223) and (219) we deduce

87r2p -d
OF -

dT1 (229)
a

i.e.,

2 OF
87r Pe VT1 (230)

We thus arrive at

tor
I QF f2F 2 1 dI

i - VT1 (231)_' 7r2
'

C, a
+   w dT1

On the other hand, this quantity can also be obtained from Maxwell's equa-
tion (219):

47,, jtor - [d(a * 13)]tor + [L,3 * S]tor. (232)

For the first term on the right we have

* L3)]tor tor) (221)
27r [d(a = 27rd(a * B = d [a * (dT/ A d p)]. (233)

Now, we use the following useful general identity, whose proof is left as an

exercise: Let X be a p-form and ? n' a Killing field. Assume also Lfn- X = 0, then

J (m A X) = -M A JX, (234)

where 6 is the codifferential.

For X = (Ct/CD2 ) dTI, ffi = .9,,, M = CD2 d o this gives

6 (a dT,, A d o) - 6
a

dTv)CD2 d o
CD2
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or

d * [a dTl A dV] = 6
a dTI) CD2 * d p.
CD2

Thus, (233) becomes

tTj) jJ227r d(a * B"') .
* d p. (235)

CD2

Next, we turn to the second term in (232). By (223) we have

L,3
'S?F - LO

* dT1
27ra

If X denotes the square bracket, we can write LO X L-, a, X La, X -

dw A ia, X, and obtain

OF - LO

2 7r a
(dTf A,! d p). (236)

With (235) and (236) we obtain for the Hodge-dual of (232)

41ra * jtor = _

1  . ( a t,,) CD2 d p
QF - W (f 7 Lo !P) CD2 d p.

2 7r  :,, 2 2,7r a

Since *itor = jtor 1 CD2 d p, we get
W

47ra
jtor

1  7* Ce tT,) S?F-LO (tW.tT,). (237)
(D 2 7r D2 2 7r a

Inserting ' LL, = VGV OF) + (dflFldfl ViP leads finally to our second formula
for jtor:

2 Aor (S?F - LO) V*T1 (S?F - LO)87r
a tTl) + -

a aL,2 a2
(D

f?F - Ul)
df2F (tTf)2. (238);;2 (
dTf

Comparison of (232) with (238) gives, after a few steps, the following generalized
Grad-Shaftanov equation:

a
-

(S?F _ W)2 CV2' _ OF - w df2F (, T,)2
16 7r2

1
dI

= 0.VT1 + + -_
CD2 a2 a dT1 Ct CV2 dT1

(239)

The integration of the original equations (for axisymmetric stationary situa-

tions) is reduced to this single partial differential equation. I(TI) and QF(fl are

free functionS2
,
and if T, is a solution of (239) the electromagnetic fields are given

2 These are, of course, restricted by boundary conditions, but we do not discuss this

here.
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by (221) and (223), while the charge and current distribution can be obtained

from (230), (224), and (231).
A limiting case of (239) is known from the electrodynamics of pulsars: Ig-

noring the curvature of spacetime and using that OF is equal to the angular
velocity Q of the neutron star (to derived shortly), we get the pulsar equation:

1
[1 _ f22 j

16 7r2 dI
' 2]  Tf + -1- - I - - 0 (240)

CD2 dT-1

(cD is the radial cylindrical coordinate in flat space).
The equation (239) holds also outside an aligned pulsar, since all the basic

equations in section 2 remain valid there. However, the different boundary con-

dition at the surface of the neutron star implies OF = Q, as we now show. In

the interior of the neutron star the 3-velocity is (see (203))

1 -

 U = (Q - (241)

Since the neutron star matter is ideally conducting, the electric field there is

E - iv B = -

I
(S? - w) dT-1,

2,7ra

if the B-field is poloidal (first term in (221)). At the boundary this has to agree
with (223), implying OF - f2-

Another remark should be made at this point about the interior of the neu-

tron star. We showed in section 8 that dS?F A dT-1 = 0 implying ds? A dT., = 0

inside the star. It will, in general, not be possible to represent Tz as a function of

S?, since T., has to satisfy the Grad-Shafranov equation for I(Tf) = 0 inside the

star. Therefore, the rotation must be rigid, Q - const.
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Uniqueness Theorems for Black Hole Space-Times

Markus Heusler

Institute for Theoretical Physics, University of Ziirich, Winterthurer Str. 190,
CH-8057 Ziirich, Switzerland

Abstract. This lecture gives a brief outline of the proof of the black hole uniqueness
theorem. Since the latter applies to stationary space-times, we first recall the reduction

of the Einstein-Maxwell action in the presence of a Killing field. The resulting coset

structure of the field equations gives rise to the Mazur identity, being the key to the

uniqueness proof for the Kerr-Newman metric.

1 Introduction

All stationary, asymptotically flat black hole solutions (with non-degenerate hori-

zon) of the Einstein-Maxwell (EM) equations are parameterized by the Kerr-

Newman metric. The proof of this celebrated result, conjectured by Israel, Pen-

rose and Wheeler in the late sixties (see [52] for a historical account) has been

completed during the last three decades (see, e.g. [17] and [421). Some open

gaps, notably the electrovac staticity theorem (Sudarsky and Wald 1992, 1993)
and the topology theorem [30], have been closed recently (see also [18]). The

uniqueness theorem implies that all stationary electrovac black hole space-times
are characterized by their mass, angular momentum and electric charge. This

beautiful feature - together with the striking analogy between the laws of black

hole physics and the laws of equilibrium thermodynamics - provided support for

the expectation that the stationary black hole solutions of other self-gravitating
matter fields are also parameterized by a set of asymptotic flux integrals (no-hair
conjecture) -

However, during the last eight years, a variety of new black hole configu-
rations which violate the generalized no-hair conjecture were found (see, e.g.
Volkov and Gal'tsov 1989, Kiinzle and Masood-ul-Alam 1990, Bizon 1990, Droz

et al 1991, Heusler et al 1991, 1992, 1993, Breitenlohner et al 1992, Lavrelashvili

and Maison 1993, Greene et al 1993). While these counterexamples consist in

spherically symmetric solutions which are not characterized by their masses and

charges, more recent studies have revealed that static black holes need not even

be spherically symmetric Q78], [59]) and, moreover, that non-rotating black holes

need not be static ([81). The rich spectrum of stationary black hole configurations
demonstrates that the matter content is by far more critical to the uniqueness
properties than originally expected.

In fact, the classical uniqueness theorem, to which the present lecture is

devoted, applies only to vacuum and electrovac space-times. The proof of the

theorem is, at least in the axisymmetric case, heavily based on the fact that the

EM equations in the presence of a Killing field form a sigma-model, effectively

F.W. Hehl, C. Kiefer, R.J.K. Metzler (Eds.): LNP 514, pp. 157 - 186, 1998
© Springer-Verlag Berlin Heidelberg 1998
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coupled to three-dimensional gravity Q26], [73]). Since this property is not shared

by models with non-Abelian gauge fields Q71), it is, with hindsight, not too

surprising that the Einstein-Yang-Mills (EYM) system admits black holes with

"hair". There exist, however, other black hole solutions which are likely to be

subject to a generalized no-hair theorem. These solutions appear in theories

with self-gravitating massless scalar (moduli) and Abelian vector fields. The

expectation that uniqueness results apply to a variety of these models arises from

the fact that their dimensional reduction (with respect to the Killing symmetry)
yields a sigma-model with symmetric target space (see, e.g. [61, [24], [31], and

references therein).
The uniqueness proof for the stationary electrovac black hole solutions com-

prises various steps, not all of which are established in an equally reliable manner

(see, e.g. Chru9ciel 1994, 1996a). The purpose of this lecture is to provide an

introduction to the reasoning, rather than the technical details of the unique-
ness proof. We shall do so by first discussing the Kaluza-Klein reduction of

the Einstein-Maxwell action in the presence of a Killing symmetry. We then

recall Hawking's rigidity theorem, some properties of Killing horizons, and the

staticity and circularity theorems. Finally, we demonstrate the uniqueness of the

Reissner-Nordstr6m solution among the static, and the Kerr-Newman solution

among the circular electrovac black hole configurations. In order to keep track

of the reasoning, we start by briefly introducing the various issues involved in

the uniqueness program (see also Fig. 1).

2 The Corner-Stones of the Uniqueness Theorem

At the basis of the reasoning lies Hawking's strong rigidity theorem (Hawking
1972, Hawking and Ellis 1973). It relates the global concept of event horizons

to the independently defined - and logically distinct - local notion of Killing
horizons: Requiring that the fundamental matter fields obey well behaved hy-
perbolic equations, and that the stress-energy tensor satisfies the weak energy
condition, the theorem asserts that the event horizon of a stationary black hole

spacetime is a Killing horizon. This also implies that stationary black hole space-
times are either non-rotating or axisymmetric. The uniqueness proofs for the

Reissner-Nordstr6m and the Kerr-Newman metric are, however, based on the

requirement that the domain of outer communications (DOC) is either static or

circular. Hence, in both cases, one has to prove beforehand that the Frobenius

integrability conditions for the Killing fields are satisfied as a consequence of the

symmetry properties and the field equations.
The circularity theorem, due to Kundt and Trilmper (1966) and Carter

(1969), implies that the metric of a vacuum or electrovac spacetime can, with-

out loss of generality, be written in the well-known Papapetrou (2+2)-split. [It
has become clear only recently that stationary and axisymmetric EYM config-
urations need not be circular (Heusler 1995, 1996a), although the circularity
property can be established for a variety of other matter models Q39]).]
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Stationary, asymptotically flat black hole spaceti

(Killing field k")

STRONG RIGIDITY THM (I" par

Event horizon = Killing horizon H[ ]
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non-rotating, k" JH[ ]= V' I [-rotating, k" JH[ ]O
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-
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later by using the positive energy thm) later by using sigma-model identities)

Schwarzschild (Reissner-Nordstr6m) Kerr (Kerr-Newman) m

Fig. I The various issues involved in the uniqueness proof

The staticity theorem, establishing that the stationary Killing field in a non-

rotating, electrovac black hole spacetime is hyper-surface orthogonal, is more

involved than the circularity problem. First, one has to establish strict station-

arity, that is, one needs to exclude ergo-regions. This problem, first discussed

by Hajicek (1973, 1975) and Hawking and Ellis (1973), was solved only recently
by Sudarsky and Wald (1992, 1993), assuming a foliation by maximal slices

(Chru9ciel and Wald 1994a). If ergo-regions are excluded, it still remains to

prove that the stationary Killing field satisfies the Frobenius integrability con-

dition. In the vacuum case, this was achieved by Hawking (1972), who was able

to generalize a theorem due to Lichnerowicz (1955) to black hole space-times.
As already mentioned, Sudarsky and Wald (1992, 1993) eventually succeeded in

solving the staticity problem for electrovac black holes, by using the generalized
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version of the first law of black hole physics. (Like the circularity theorem, the

staticity theorem is easily extended to scalar fields ([39]), whereas the general-
ization to non-Abelian gauge fields requires additional assumptions.)

The main task of the uniqueness problem is to show that the static elec-
trovac black hole space-times (with non-degenerate horizon) are described by
the Reissner-Nordstr8m metric, whereas the circular ones (i.e., the stationary
and axisymmetric ones with integrable Killing fields) are represented by the
Kerr-Newman metric.

In the static case it was Israel (1967, 1968) who, in his pioneering work, was

able to show that both static vacuum and electrovac black hole space-times are

spherically symmetric. Israel's ingenious method, based on integral identities and
Stokes' theorem, triggered a series of investigations devoted to the uniqueness
problem (see, e.g. Miiller-zum-Hagen et al 1973, 1974, Robinson 1974, 1977).
Later on, Simon (1985), Bunting and Masood-ul-Alam (1987) and Masood-ul-
Alam (1992) were able to find new proofs of the Israel theorem, which were based
on the positive energy theorem (see Schoen and Yau 1979, 1981, and Witten 1981
for the proof of the latter) -

The uniqueness theorem for the Kerr metric relies heavily on the Ernst formu-
lation of the Einstein vacuum equations (Ernst 1986; see also Ehlers 1959, Neuge-
bauer and Kramer 1969, Geroch 1971, 1972). The key to the proof consists in
Carter's observation that the field equations reduce to a two-dimensional bound-

ary value problem (Carter 1971, 1973b). An amazing identity due to Robin-
son (1975) then establishes that all vacuum solutions with the same boundary
and regularity conditions are identical. The uniqueness problem for the sta-

tionary and axisymmetric case with electromagnetic fields remained open until
Mazur (1982, 1984a,b) and, independently, Bunting (1983) were able to ob-
tain a generalization of the Robinson identity in a systematic way: The Mazur

identity is based on the observation that the Ernst equations describe a non-

linear sigma-model with coset space GIH, where G is a connected Lie group
and H is a maximal compact subgroup of G. In the electrovac case one finds
GIH = SU(1, 2)IS(U(l) x U(2)). Within this approach, the Robinson identity
turns out to be the explicit form of the Mazur identity for the vacuum case,
GIH = SU(1, 1)IU(1).

The uniqueness theorem presented in this lecture applies exclusively to space-
times having Killing horizons with non-vanishing surface gravity. The multi black
hole solutions of Papapetrou (1945) and Majumdar (1947) illustrate that sta-

tionary EM black holes with degenerate Killing horizons need not belong to
the Kerr-Newman family. The uniqueness of the Papapetrou-Majumdar solu-
tion amongst the stationary electrovac black hole configurations with degenerate
horizons is not yet completely established (see Chru9ciel and Nadirashvili 1995,
[43] for recent progress).
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3 Stationary Electrovac Space-Times

For physical reasons, the black hole equilibrium states are expected to be sta-

tionary. In order to describe these configurations as isolated systems, spacetime
is also assumed to be asymptotically flat. As for the matter content, it is required
that the DOC is either empty or contains no other fields than electromagnetic
ones. Hence, the uniqueness theorems are statements about asymptotically flat
black hole solutions of the stationary EM equations in the absence of additional

matter fields. In the presence of a Killing symmetry, the EM equations exhibit

some distinguished features, to which this section is devoted.

3.1 Reduction of the Einstein-Hilbert Action

By definition, a stationary spacetime (M, g) admits an asymptotically time-like

Killing field, that is, a vector field k with Lk9 = 0, Lk denoting the Lie derivative

with respect to k. At least locally, M has the structure Z x G, where G IR

denotes the one-dimensional group generated by the Killing symmetry, and Z

is the three-dimensional quotient space MIG. A stationary spacetime is called

static, if the integral trajectories of k are orthogonal to Z.

With respect to the adapted time coordinate t, defined by k =- 19t, the met-

ric of a stationary spacetime is parametrized in terms of a three-dimensional

(Riemannian) metric q, a scalar field o- and a one-form a _= ai dx' on (Z, q):

g o-(dt + a) 0 (dt + a) +

Note that a is the connection of a fiber bundle with base space Z and fiber

G. The derivative of a is closely related to the dual of the twist one-form, W,

assigned to k: In terms of the Killing one-form -u(dt + a), one has

2w =_ *(kAdk) - -a2*- da (2)

where *- denotes the Hodge dual with respect to the three-dimensional Rieman-

nian metrico. (In the following we shall use the symbol k for both the Killing
field and the one-form k.) It is worth noticing that the "field strength", f =- da,
is gauge invariant, since a transforms like an Abelian gauge potential under

coordinate transformations.
It is a straightforward task to compute the Ricci scalar for the decomposition

(1). Using the symbols R and Z for the Ricci scalar and the Laplacian with

respect to 0, one finds (Exercises 1 & 2)

R-,/--g = V1g- R_ + Z In o- -
1

(do-, do-) +
072

(da, da) , (3)
20-2 2

where here and in the following denotes the inner product with respect to

_4 (i.e., *- (,3,,3) - 3 A  0 for an arbitrary p-form 3). The above formula shows
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that the Einstein-Hilbert action of a stationary spacetime reduces to the action

for a scalar field a and an Abelian vector field a, which are coupled to three-di-

mensional gravity. The fact that this coupling is minimal is a consequence of the

particular choice for the conformal factor in front of the three-metric .4 in (1) -

The vacuum field equations are, therefore, equivalent to the three-dimension-

al Einstein-matter equations obtained from variations of the effective action

- 1 012
Seff f ; R-

2 (do-, do,) +
2

(da, da) (4)

with respect to gij, o, and a.

3.2 The Vacuum Target Space and the Ernst Potential

It is of crucial importance that the one-form a, parametrizing the non-static

part of the metric, enters the effective action (4) only via the field strength, f =_

da. For this reason, the off-diagonal Einstein equation, that is, the variational

equation for a, assumes the form of a source-free Maxwell equation,

d (a2da) = 0. (5)

Hence, there exists (locally) a function Y, such that

dY = - (or2da) , (6)

where the definition (2) shows that Y is the potential for the twist one-form,
2w = dY. In order to write the effective action (4) in terms of the twist potential
Y, rather than the one-form a, one uses (6) and a Lagrangian multiplier to

impose the constraint d (0-2 -*dY) = 0 (since d2a = 0). A short computation
shows that this effects in replacing or

2 (da, da) by _0-2 (dY, dY). Thus, the

action (4) for the stationary vacuum Einstein equations becomes

Seff = ; R -

(da, do-) + (dY, dY) (7)f 20,2

where we recall that is the inner product with respect to the three-metric

defined in (1).
The action (7) describes a harmonic mapping into a two-dimensional target

space, effectively coupled to three-dimensional gravity. In terms of the complex
potential 9 (Ernst 1968), one has

(dE , dt)Seff f (f? - 2
(E + E) 2

E + iY. (8)

The stationary vacuum Einstein equations are obtained from variations with

respect to the three-metric q [(ij) -equations] and the Ernst potential S [(Ofi)-
equations]. One easily finds

Rij
2

11613 (9)
(E + E)2
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and

(dE, M) (10)
+ E

(In the static case, Y = 0, (10) reduces to the Poisson equation for the grav-
itational potential lno, with respect to the metric q.) Introducing the complex
potential E according to

reveals that the target space is the complex unit disc with standard metric or,

equivalently, the pseudo-sphere, PS', in stereo-graphic coordinates Re(e), Im(e:)
(Exercise 3):

(dE , dg) (dE , dE)
(12)

(E + E)2
-

(I- JF 12)2

As SO(2, 1) acts isometrically on pS2 with isotropy group SO(2), the target
space is the coset SO(2, I)ISO(2) P -, SU(1, I)IU(1).

3.3 Stationary Maxwell Fields

A stationary gauge potential A, say, can be decomposed into parallel and or-

thogonal components to the three-manifold Z. Introducing the function 0 on Z

and the one-form A on Z, we may write

A = 0 (dt +a) + A, (13)

where a is the non-static part of the metric defined in (1). (In general, a gauge
potential A is called stationary if it is invariant - up to gauge transformations
- under the group generated by the Killing field k (Forgics and Manton 1980).
That is, LkA = DV for some function V, where DV = dV in the Abelian case

under consideration; see, e.g. Heusler and Straumann 1993a,b.) By virtue of the

above decomposition, the Abelian field strength becomes

F = dO A (dt + a) + (F + Of), (14)

where F =_ dA, and we recall that f H da. (The Maxwell equations, d * F = 0,
with respect to the metric (1) are derived in Exercise 4.)

It is not hard to write the matter Lagrangian, F A *F, in terms of the fields

A and the metric (1). Using the result (4) for the vacuum action, one easily
finds that the Einstein-Hilbert-Maxwell action,

SEM = f (*R - 2FA*F) , (15)



164 Markus Heusler

gives rise to the effective action (Exercise 5)

Seff = f  R -

1
(do.) 2

+
0,2

(da) 2 +
2

(do)2 - 2o-(dA + Oda)2 , (16)
20-2 2 a

where ( )2 is a shorthand for the inner product with respect to the metric

.0-
In addition to the scalars a and 0, the above action contains the metric one-

form a and the magnetic one-form A. Like in the vacuum case, the former enters

the effective action only via the field strength f =- da, and gives, therefore, rise

to the conservation law

d*- [,72f- 4 o, 0 (P +Of)] = 0. (17)

In a similar way, the magnetic gauge potential, A, enters the effective action

only via the field strength F. Since, in the Abelian case, F = dA, the Maxwell

equation for A assumes the form of a conservation law as well,

d*- [o- (P +Of)] = 0. (18)

The closed one-forms  [... ] defined by the above equations give rise to two scalar

potentials, Y and 0, say. By virtue of (18), the magnetic potential 0 is defined

by

dV) -= o, + Of). (19)

Using this in the twist equation (17), the latter can be written in the symmetric
form d(o,2q - 20do + 20do) = 0, which suggests the definition

dY =- -o,2; f + 20do - 2,0do = 2 [w + Odo - Odo], (20)

where we have also used the definition (2) of w.

It is worth noticing that the decomposition (14) of F and the definition (19)
imply that the electromagnetic potentials are obtained from F and k = at by
do = -F(k, - ) and dio = (*F) (k, - ); see Exercise 4. We also emphasize that the

generalized twist potential, Y, still exists for non-Abelian self-gravitating gauge
fields, since (17) remains valid in this case. However, as F is no longer an exact

differential-form, the conservation law (18) ceases to exist for Yang-Mills fields,
and so does the magnetic potential 0. This is, in fact, the only difference in the

Kaluza-Klein reduction of the EM and the EYM system (see, e.g. Brodbeck and

Heusler 1997).
In order to pass from the one-forms a and A to the scalar potentials Y and

one applies again the Lagrange multiplier method. Using the definitions (19)
and (20), as well as the constraints dP = 0 and df = 0 in the effective action

(16), yields (Exercise 6)

(do)2 + (do) 2 (do-)2 + (dY - 20dV) + 2V)do)2
Seff ::::--f; (R + 2

Cr 2 C2 ) , (21)
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which reduces to the vacuum action (7) for 0 = 0, 0 = 0. Hence, the stationary
EM system is described by a non-linear sigma-model with four-dimensional tar-

get space, minimally coupled to three-dimensional gravity. The EM equations
are obtained from variations of the effective action (21) with respect to the elec-

tromagnetic potentials 0 and  b, the gravitational potentials a and Y, and the

three-metric 0.

3.4 The Coset Formulation for Electrovac Space-Times

So far we have considered the dimensional reduction of the EM system in the

presence of a time-like Killing field. It is clear that the method can be applied in

a similar way to electrovac space-times admitting a space-like Killing symmetry.
In this case, one has to define the scalar potentials and the metric 'q with respect
to the space-like Killing field. (In particular, it will be crucial that the second

term in the effective action (21) then has the same sign as the third term.) For

an arbitrary Killing field  , say, one finds

(do)2 + (do) 2 (dN)2 + (dY - 20do + 20do)2
S,,ff f 2

N 2 N2 , (22)

where the electromagnetic potentials are obtained from the four-dimensional

field strength F and the Killing field  by

do = -i F, do = i * F. (23)

(Any two-form 3 can be assigned the one-form i o with components
The gravitational scalars, N and Y, are related to the norm and the twist of

respectively:

N dY = 2 (w + 0&0 - Odo) , (24)

where 2w A d ) -
The inner product ( , ) is taken with respect to the three-

metric g, which becomes pseudo-Riemannian if  is space-like. In the stationary
and axisymmetric case, to be considered below, the Kaluza-Klein reduction will

be performed with respect to the space-like Killing field. The presence of the

stationary symmetry will then imply that the inner products in (22) have a

fixed sign, despite the fact that g- is not a Riemannian metric in this case.

We have already mentioned that the action (22) describes a harmonic map-

ping into a four-dimensional target space, effectively coupled to three-dimen-

sional gravity. The target space can be parametrized in terms of the complex
potentialsS and A, defined by (Ernst 1968)

-N - (02+,02) + ZY
,

A + i7P. (25)

In terms of the Ernst potentials, the effective action (22) assumes the form

 (R I dA 12 1 1 dS + 2AdA 12
(26)Seff f R - 2

N 2 N2
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where JdA 12 =- (dA, dA). The field equations are obtained from variations with

respect to the three-metric g and the Ernst potentials (Exercise 7). In particular,
the latter turn out to be subject to the equations

(dE, dS + 2AdA) - (dA, M + 2AdA)
N(9, A) I

AA =

N(E, A)
(27)

which generalize the vacuum result (10). [According to (25) one has -N(E, A)
AA + .1 (E +2

The isometries of the target manifold are found by solving the respective
Killing equations (Neugebauer and Kramer 1969). This reveals the coset struc-

ture of the target space and provides a parametrization of the latter in terms of

the Ernst potentials. For vacuum gravity, we have already argued that the coset

space, GIH, is SU(1, 1)IU(1), whereas one finds GIH = SU(2, 1)IS(U(l, 1) x

U(1)) for the EM equations with a time-like Killing field. If the dimensional

reduction is performed with respect to a space-like Killing field, then GIH
SU(2, 1)IS(U(2) x U(1)).

The explicit representation of the coset manifold in terms of the above Ernst

potentials, 9 and A, is given by the hermitian matrix  P, with components

!PAB = 77AB + 2 sig(N) VAVB, where q = diag(-1, +1, +1), (28)

and where the vector v is defined by (Kinnersley 1973, 1977, Kinnersley and
Chitre 1977, 1978)

(VOiV1iV2) 1, S + 1, 2A). (29)
2VI N I

It is straightforward to verify that, in terms of  P, the effective action (22) assumes

the SU(2, 1) invariant form (Exercise 8)

Seff = ;i R
1
Tr(J, J) ,

with J =-  Vld!P, (30)f 4

j) (jA , jB) pij(j,) A pwhere Tr(J, j)B .
The equations of motion follow-B A B A

ing from the above action are the three-dimensional Einstein equations (obtained
from variations with respect to 0) and the sigma-model equations (obtained from
variations with respect to fl (Exercise 9):

Rij =

I
".aIJi JjJ, d J = 0

- (31)
4

3.5 The Structure of the Mazur Identity

In the presence of a second Killing field, the above equations experience further,
considerable simplifications, which will be discussed later. In the remainder of
this section we will, however, not yet assume the existence of an additional Killing
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symmetry. The structure of the Mazur identity (Mazur 1982, 1984), being the

key to the uniqueness theorem for the Kerr-Newman metric, is a consequence
of the coset structure of the field equations, which only requires the existence of

one Killing field. (The second Killing field is, of course, of crucial importance to

the boundary value formulation of the field equations and the integration of the

Mazur identity.)
In order to obtain the general form of the Mazur identity, we consider two ar-

bitrary hermitian matrices, 4i, and !P2 , say. Our aim is to compute the Laplacian
(with respect to an arbitrary metric, g-, say) of the relative difference between

4 2 and 4ij,

If = !P2!Pl 11 (32)

We define the current matrices J, and J2 and their difference, J"', according to

J, = 4i VC i Jn, = J2 - J1 (33)

where V denotes the covariant derivative with respect to the metric under con-

sideration. Using !P2 JA!Pl one immediately finds for the Laplacian of

(V!P2, JL)!Pi + 4 2+ 42 (JL ,
V!P

1 1

tNow using the fact that  P we have 'Q'P2 J2!P2 and V P ' -45 'Jjt1 1

Taking the matrix trace of the above identity finally yields

Tr Jt
1 42 JA) + Tr flt2 (VJA) Itl (34)A

Before we use this identity to prove the uniqueness theorem for the Kerr-Newman

metric, we have to recall some basic properties of stationary black hole space-
times.

4 Stationary Black Holes

Space-times with event horizons exhibit a variety of interesting local and global
properties. Particularly intriguing features are the mass variation formula by
Bardeen, Carter and Hawking (1973), and the area increase theorem, which

suggest a relationship between the physics of (stationary) black holes and the

laws of (equilibrium) thermodynamics. (See, e.g. Wald 1984 for the area theorem,
Sudarsky and Wald 1992, 1993, Iyer and Wald 1994, Heusler and Straumann

1993 for some recent results on mass variation formulas, and the Lecture by G.

Neugebauer for an up-to-date review on black hole thermodynamics.)
Of particular relevance to the uniqueness theorems for stationary black holes

is the strong rigidity theorem (Hawking 1972, Hawking and Ellis 1973), which

yields a subdivision of the stationary electrovac black hole configurations into
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non-rotating and axisymmetric ones (see Fig. 1). In addition, the theorem guar-
antees the Killing property of the horizon, which, in turn, implies that the surface

gravity of a stationary black hole is constant (zeroth law).
The Frobenius integrability conditions provide the link between the outcome

of the rigidity theorem and the requirements which are needed to prove the

uniqueness of the Reissner-Nordstr6m and the Kerr-Newman metric: In the non-

rotating case one must establish staticity, whereas circularity is required in the

stationary and axisymmetric situation (see, e.g. Carter 1987). [As already men-

tioned in the introduction, the integrability properties of the Killing fields are

sensitive to the matter model. In particular, the Abelian nature of the gauge
fields is of decisive importance in this context (see, e.g. Heusler 1996a).]

4.1 Killing Horizons

We start by recalling the definition of a Killing horizon: Consider a Killing field

 , say, and the set of points with N =_ ( ,  ) = 0. A connected component of
this set which is a null hyper-surface, (dN, dN) = 0, is called a Killing horizon,
H[ ].

An immediate consequence of the above definition is the fact that  and dN

are proportional on H[ ]- (Note that ( , dN) = 0, since L N = 0, and that two

orthogonal null vectors are proportional.) This suggests the following definition
of the surface gravity, r.,

dN = -2 r,  on H[ ]. (35)

It is an interesting fact that the surface gravity plays a similar role in the theory
of stationary black holes as the temperature does in ordinary thermodynamics.
Since the latter is constant for a body in thermal equilibrium, the result that

r. = constant on H[ ] (36)

is usually called the zeroth law of black hole physics (Bardeen et al 1973).
The zeroth law can be established by different means, depending on the

specific assumptions (see Kay and Wald 1991, Ricz and Wald 1992, 1996, and
Heusler 1996b for a compilation of the methods). A rather simple, purely geo-
metrical proof can be obtained for static or circular space-times (Exercise 10). If,
however, the Killing fields are not required to be hyper-surface orthogonal, then
Einstein's equations and the dominant energy condition are needed to establish
that n is uniform over H[ ]. The idea of this (original) proof is the following:
First, one establishes the relations (see, e.g. Wald 1984)

R( ,  ) = 0 on H[ ] , (37)

A dK = -  A R( ) on H[ ], (38)

where R( , and R( ) is the one-form with components [R( )], =
R., '. In combination with Einstein's equations, and the fact that  is null on
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the horizon, (37) implies that the component T( ,  ) of the stress-energy tensor

vanishes on the horizon. Thus, the one-form T( ) is perpendicular to  and,
therefore, space-like or null on H[ ]. On the other hand, the dominant energy

condition requires that T( ) is time-like or null. Hence, fl ) is null on the horizon

and, therefore, also proportional to 6. Using Einstein's equations again yields

6 A R(6) = 0 on H[6]. (39)

Now one uses (38) to conclude from (39) that 6 A dK vanishes on the horizon.

Hence, for any vector field tangent to the horizon, r", say, one has -r1'r,,,, = 0,
which proves the zeroth law (36).

4.2 The Strong Rigidity Theorem

The power of the strong rigidity theorem lies in the fact that it relates the global
concept of event horizons to the local notion of Killing horizons. Under certain

conditions, the theorem asserts that the event horizon of a stationary black

hole spacetime is a Killing horizon. Moreover, if the stationary Killing field, k,
does not coincide with the horizon Killing field, 6, then the rigidity theorem

guarantees that spacetime admits at least one axial Killing field. Stationary
electrovac black hole space-times are, therefore, either non-rotating (that is,

k) or axisymmetric.
Among other assumptions, the proof of the rigidity theorem requires that

spacetime is analytic, the fundamental matter fields obey well behaved hyper-
bolic equations and the stress-energy tensor fulfills the weak energy condition.

Unfortunately, the analyticity assumption has, for instance, no justification if the

domain of outer communications admits regions where the stationary Killing
field becomes null or space-like. (See Chru9ciel 1996, Chru6ciel and Galloway
1996 for recent progress concerning the rigidity theorem.)

5 Staticity and Circularity

The integrability theorems for the Killing fields provide the link between the

strong rigidity theorem and the assumptions on which the classical uniqueness
theorems are based. In the non-rotating case one has to show that a stationary
domain of outer communications (with Killing field k, say) is static,

I
Wk =

- * (k A dk) = 0, (40)
2

whereas in t-he stationary and axisymmetric situation (with Killing fields k and

m, say) one must establish the circularity conditions:

(M, Wk) = -- * (m A k A dk) = 0, (41)
2
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and similarly for k 4-+ m. For vacuum space-times, the staticity and circularity
theorems were proven by Carter (1973b). While Carter also succeeded in estab-

lishing the electrovac circularity theorem in the early seventies (see, e.g. Carter

1987), it took, however, some effort until the corresponding staticity issue was

settled by Sudarsky and Wald (1992, 1993).
The task is to establish (40) and (41) by using the invariance properties of the

matter fields with respect to the Killing symmetries. The link between the rele-

vant components of the stress-energy tensor and the geometrical conditions (40)
and (41) is provided by the Ricci identity for Killing fields,  A = -2R( ), and

the Einstein equations (Exercise 11). By virtue of these, one obtains the useful

relation dw 81r * [ A T( )] between the derivative of the twist (of an arbitrary
Killing field and the stress-energy one-form T( ) (Exercise 12). Hence, the dif-

ferentiated Frobenius integrability conditions (40) and (41) assume the simple
form

dWk = 87r * [k A T(k)] = 0, (42)

d (m, Wk) = -87r * [m A k A T(k)] = 0, (43)

and similarly for k m. [In order to obtain the second equation one uses

d (m, U-1k) = dimWk (Lm - imd)U)k, and the consequence Lmwk = 0 of the

commutation property of the Killing fields (Carter 1970). A powerful proof of

[k, m] = 0 which does not require the existence of an axis was given by Szabados

(1987).]
The above formulas show that the Frobenius conditions (40), (41) imply the

properties (42), (43). The task is, however, to establish the converse direction.

In the stationary and axisymmetric case, this is not too hard, since the vanishing
of the one-form d (m, Wk) implies that the function (M , Wk) is constant. Since,
in addition, (M i WO vanishes on the rotation axis, the circularity condition (41)
follows if the stress-energy tensor has the property (43).

In the non-rotating case the situation is more difficult, since dwk = 0 does

not automatically imply that the twist one-form itself vanishes. However, using
the identity (Exercise 13)

d LOk A
k

= dU)k A
k
- 2

GOk ) LOk
k, (44)

(7 a 0,2

Stokes' theorem shows that dwk = 0 does in fact imply Wk = 0, provided that the

domain of outer communications is strictly stationary, that is, if o, (k, k)
0. In order to see this, one uses asymptotic flatness and the general properties
of Killing horizons to conclude that Wk A ,k vanishes at infinity and at (each
component of) the horizon. This shows that a strictly stationary domain of outer
communications with non-rotating Killing horizon is static, if dwk = 0, that is,
if k A T(k) = 0. In particular, no restrictions concerning the connectedness

of the horizon enter the above argument. (The original proof of the vacuum
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staticity theorem was based on the fact that dwk = 0 implies the local existence

of a potential, and was therefore subject to stronger topological restrictions.)
Hence, under the (weak) assumptions used above, it is sufficient to establish the

properties (42) and (43) in order to conclude that the Frobenius integrability
conditions (40) and (41) are fulfilled.

In order to prove the circularity theorem for the EM system, it therefore

remains to establish (43). The expression for the Maxwell stress-energy tensor

yields

* [k A T(k)] -
- (ikF) A (ik * F) . (45)
47r

The symmetry condition LkA = dV (for some V) implies -ikF = -ikdA
dikA - LkA = d(ikA - V) =_ do. Since 0 = *LkF = Lk * F, the Maxwell

equation d * F = 0 implies dik * F = 0, and hence ik * F = do, for some locally
defined scalar magnetic potential o. Thus,

dUL)k = 87r * [k A T(k)] 2 do A do, (46)

which enables one to introduce a generalized twist potential Y, defined by

dY = 2 (Wk + 0 do - o do) . (47)

This is, of course, the same expression as we have already obtained earlier from

the Kaluza-Klein decomposition of self-gravitating Maxwell fields [see (14), (20),
(23) and (24)]. Since the potentials 0 and o are invariant under the action of

the axial Killing field m, Lmo = Lmo = 0, (46) yields the desired result:

d (m, U)k) = -imdWk = 2i,, (do A do) = 2 [(Lmo) do - (Lmo) do] = 0.

It is worthwhile noticing that the circularity theorem does not hold for non-

Abelian gauge fields. Although the twist potential, Y, can still be introduced,
it is not possible to conclude from the Yang-Mills equations and the symmetry
conditions that d (m, Wk) vanishes: For gauge fields with arbitrary gauge groups
one finds

dwk = 2 d [Tr 10 ik * FJ] , (48)

and, with d (rn, Wk) = -irndWk)

d (m, Wk) = 2 d [Tr f0 (*F) (k, m) 1] , (49)

which does not vanish automatically, unless the gauge field is Abelian. (Only in

the Abelian case one has (*F) (k, do, implying that (*F) (k, m) = Zmd t,
Lmo = 0.)

As for the staticity theorem, we recall that the proof follows from Stokes'
theorem and the identity (44), provided that dwk = 0, i.e., k A T(k) = 0 can

be established from the matter equations. Whereas this is trivial in the vacuum
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case, the Maxwell equations and the symmetry conditions do not automatically
imply that k A T (k) vanishes. Hence, what is needed is a more powerful identity,
including the electromagnetic potentials. While identities of this kind have been

constructed, they turned out to be useless to the staticity problem, since they
do not yield semi-definite integrands. In fact, a proof of the electrovac staticity
theorem along the lines presented in this section is still outstanding (see, e.g.
Carter 1987 or Heusler 1996b). As already mentioned, the problem was solved

by different means a couple of years ago (Sudarsky and Wald 1992, 1993).

6 Uniqueness of the Reissner-Nordstr8m Metric

Since the staticity theorem holds for both vacuum and electrovac black hole

space-times with non-rotating horizons, it remains to show that the Reissner-

Nordstr8m metric is the unique asymptotically flat black hole solution to the

static EM equations. This was first achieved by Israel in 1967 (vacuum) and

1968 (electrovac), and later, using the positive energy theorem, by Simon (1985),
Bunting and Masood-ul-Alam (1987), and Masood-ul-Alam (1992). Here we give
a brief outline of Israel's original reasoning, where, for the sake of simplicity, we
restrict ourselves to the vacuum case (Israel 1967).

6.1 The Israel Theorem

The celebrated Israel theorem establishes that all static black hole solutions

of Einstein's vacuum equations (with non-degenerate horizon) are spherically
symmetric. Israel (1967) was able to obtain this result by considering a particular
foliation of the static three-dimensional hyper-surface Z: Requiring that the

metric function S is an admissible coordinate, the spacetime metric is written

in the form

g = _S2 dt 0 dt + P2 dS 0 dS + (50)

where both p and the metric  depend on S and the coordinates of the two-

dimensional surfaces with constant S. With respect to the tetrad fields 0' = Sdt
and 01 = pdS one finds (Exercise 14)

1 K_(9K_P 2

-

-

2,AVp- -(tp, tp) (, ,
ab-

Goo + Gil =

P -S 19s 2
K

2p2
+ KabK

VfP

(51)

I
-

K aK
-

- - I (tP, tp) 0 ,, ab

Goo + 3Gii =

P -3 s -

as.
- R - A Inp -

P2
+ 2 KabK

L

(52)
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where Kab --::: (2p)_1aab1aS is the extrinsic curvature of the embedded surface
0

S = constant in E, and Kab= Kab -  gabK is the trace-free part of Kab- Using
the "Poisson" equation

09P
- P2(K - pS Roo) (53)

as

and the vacuum Einstein equations, Goo = G11 = Roo = 0, one obtains the

following inequalities from (51) and (52):

a K
< -2

N/9-47 Z VI-p , (54)
as s s

a Vl'g
[KS + 4] s X/g: 7 (Z In p + i?) , (55)19S P P

where equality holds if and only if Kab= tp = 0. The strategy is now to in-

tegrate the above estimates over a space-like hyper-surface extending from the
horizon (S = 0) to a two-sphere at space-like infinity, S2 (S = 1). Using the

00

Gauss-Bonnet theorem, one has fZ Sf?dS A fol SdS fsl  = 187r. Since
2

PM = 0, one findsfsA

K
-

- 1 -

KS + 4p- 1

f - 71 :! _ 0 fS P 0

< -47r. (56)
-

S VIPs
- 0

In order to evaluate these inequalities at infinity (S 1), one uses asymptotic
flatness to conclude that

1
M 2

P_ -+
2

K -

, as S --+ 1 (57)
r r

(Exercise 14). At the horizon (S 0), one takes advantage of the G11 vacuum

equation and the fact that the curvature invariant R,,3.,6R1,8'Y6 is required to

remain finite. This yields (Exercise 14)

K 1
Kab -+ 0

2
pR, as S -4 0. (58)

By virtue of the above limits one now obtains 87rV_M_ - 47rVp-H for the evaluation

of the first, and -4APH2for the second integrand in (56), where A denotes the
area of the horizon. Hence, the inequalities (56) yield the estimates

M <
PH A

>
PH

(59)
4 47rPH - 4
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0

where we recall that equality holds if and only if both Kab and Vp vanish. Since

the Komar expression for the total mass of a static vacuum black hole spacetime
yields (Exercise 16)

M
A

(60)
47rPH

we conclude that equality must hold in the above estimates. [Also note that PH'
is the surface gravity of the horizon, PH r. (Exercise 15).] Equality in the

estimates (56) implies equality in (54) , (55), and hence

Kab - 1abK = 0, tP = 0. (61)
2

Using this in (51) and (53) shows that both p and K depend only on S. Equation
(52) then implies that i? is constant on the surfaces of constant S. Explicitly one
finds p = 4c(l _ S2)-2 ,

K = C-1S(j _ S2 ) and f? = IC-2(l _ S2)2, where c is
2

2
a constant of integration. Hence, defining r(S) by the relation f? = 2/r , yields
(with c = M)

S2
2M

, P2dS2 = (1
2M

)-1 Dr2 r2dR2
, (62)

r r

which is the familiar form of the Schwarzschild metric.

6.2 Uniqueness and the Positive Energy Theorem

The Uniqueness of the Reissner-Nordstr6m metric was also established by Israel

(1968), who was able to generalize the above ideas to the EM system (see also

Miiller zum Hagen et al 1973, 1974). A more recent proof, using the positive
energy theorem - and avoiding the Israel slicing and the connectedness require-
ment for the horizon - was given by Simon (1985), Bunting and Masood-ul-Alam

(1987), and Masood-ul-Alam, (1992). The reader who is interested in this elegant
and powerful approach to the static uniqueness theorem is referred to the original
literature and to Heusler (1996b) for a brief outline of the ideas.

7 Uniqueness of the Kerr-Newman Metric

The circularity theorem implies that stationary and axisymmetric electrovac

black hole space-times admit a foliation by two-surfaces orthogonal to the Killing
fields k and m. This can be used to reduce the field equations (31) to a set

of differential equations on a fixed, two-dimensional background. The Mazur

identity then shows that the Kerr-Newman metric is the unique solution to the

corresponding boundary value problem.
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7.1 Reduction to a Boundary Value Problem

We have demonstrated that the EM equations in the presence of a Killing field

describe a harmonic mapping into a coset space, effectively coupled to three-

dimensional gravity. For the Kaluza-Klein reduction with respect to the axial

Killing field m -,9,, with norm X, say, the metric assumes the form (1),

g = X(d p + a) 0 (d p + a) +
1
0, (63)

X

where now q is a pseudo-Riemannian three-metric. According to (31) the EM

equations are

Rij Trf Ji Jj I, &J = 0, with J -= 4i-'dP, (64)
4

where the hermitian 3 x 3 matrix!P comprises the electromagnetic potentials
and 0, and the gravitational potentials X and Y. We emphasize again that now

all scalar potentials are defined with respect to the space-like Killing field, m. As

already mentioned, this implies that the coset space becomes SU(2, I)IS(U(2) x

U(1)), which will be of crucial importance to the signs in the Mazur identity.
In the stationary and axisymmetric case under consideration, there exists, in

addition to m, an asymptotically time-like Killing field k. Since k and m fulfill
the Frobenius integrability conditions, the spacetime metric can be written in

the Papapetrou (2+2)-split. For the Kaluza-Klein metric (63) this simply implies
that q is a static pseudo-Riemannian three-metric, 0 = -p2dt2 +  , and that

a is orthogonal to the two-dimensional Riemannian manifold ' with metric
b abdxadx , i.e., a = atdt. Moreover, as k and m are Killing fields, all

quantities depend only on the two coordinates on (Z, ). With respect to the

resulting metric (Papapetrou 1953),

g = X (d o + atdt)2 +
I

(_p2dt2 + (65)
X

the Einstein-Maxwell equations (64) become a set of partial differential equations
on the two-dimensional Riemannian manifold

' Ap 0, (66)

kb tbtaP 1Tr Ua Jbj (67)
P 4

Va (pja ) = 0. (68)

Here we have used the standard reduction of the Ricci tensor R with respect to

the static three-metric.0 = -p2dt2 + (Exercise 17). We have also used the fact
that J has no components orthogonal to , implying Jt = 0 and ; J = -pdtA  J.
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[This follows from J = 4i-ld P and the circumstance that 4i is a matrix valued

function on (,  ).] It is worthwhile noticing that the sigma-model equations
(68) are a consequence of the the Bianchi identity for the Einstein tensor of the

metric  and the remaining equations, (66) and (67); see Exercise 18.

The last simplification of the field equations is obtained from the fact that

p can be chosen as one of the coordinates on (, ). This follows from the fact
that p is harmonic (with respect to the Riemannian two-metric  ) and non-

negative, and that the domain of outer communications of a stationary black
hole is simply connected (Chru9ciel and Wald 1994b). The coordinates p and z

are called Weyl coordinates, where z is the conjugate harmonic function. Using
Morse theory (see, e.g. Milnor 1963), Carter (1973b) was able to exclude critical

points of p in the domain of outer communications, p  ! 0. A more recent, and

very elegant proof for the existence of Weyl coordinates was given by Weinstein

(1990), taking advantage of the Riemann mapping theorem (or, more precisely,
Caratheodory's extension of it (see, e.g. Behnke and Sommer 1976).

Since  can be chosen to be conformally flat with respect to Weyl coordinates,
we end up with the metric

9
P dt2 + X (d p + atdt)2 +

1
e2h (dP2 + dZ2) (69)

X X

the sigma-model equations

(P JP) 'P + (P Jz) 'z
= 0, (70)

and the remaining field equations (Exercise 19)

h,,o =
P
Tr JJ,, Jp - Jz J-, h,z = p Tr fJp Jz (71)

2

for the function h(p, z). It is not hard to verify that (70) is the integrability
condition for (71). [This is, of course, a consequence of the Bianchi identity,
as discussed above.] Since (68) is conformally invariant, the metric function

h(p, z) does not appear in (70). Therefore, the stationary and axisymmetric
EM equations reduce to a boundary value problem for the matrix 4i on a fixed,
two-dimensional background. Once the solution of (70) is found, the remaining
metric function h(p, z) is obtained from (71) by quadrature.

7.2 The Ernst Equations and the Kerr-Newman Solution

In order to derive the Kerr-Newman metric, and to prove its uniqueness, it

is sufficient to consider the non-linear partial differential equation (70) for the

matrix!P. (Recall that J = !V'd4i.) Writing out the components of this equation
yields the Ernst equations and a set of additional, redundant differential relations
between the potentials. [The latter are, nevertheless, very useful, since their

integration over a space-like hyper-surface yields interesting relations between
the total mass, the angular momentum and the electric charge (Heusler 1997b).]
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As it is rather tedious, although straightforward, to write out the components
of (70) in terms of the Ernst potentials.6 and A, one better uses (27) to obtain the

explicit form of the Ernst equations. Using g = _p2 dt2 +  ' one has 3S +
p-'(dp, M), where ( , ) now refers to the Riemannian two-metric  . Equations
(27) now yield the following conformally invariant equations on (Z,  ) (Exercise
20):

- (dp , dE) 2 &, Me + AdA)
'AE + -

P
+

1 - I E 12 -I A 12
= 0, (72)

- (dp, dA) 2(dA, Me + AdA)
,,AA + -

P
+

1- 1 F 12 - I A 12
::::: 0, (73)

where the Laplacian ,A refers to  . The complex potentials E and A are defined

by

S =:

I E

,
A -

A
(74)

1+6 1+6,

(Note that this is not the same definition of - as in the vacuum case (11), since
there we have considered the dimensional reduction with respect to the time-like

Killing field.)
In order to control the boundary conditions, it is convenient to introduce

prolate spheroidal coordinates, x and y, defined in terms of p and z by

P
2
- A2 (X2 - 1) (1 - Y2) , Z = A xy, (75)

where p is a constant. The domain of outer communications, that is, the upper

half-plane p > 0, corresponds to the semi-strip f (x , y) I x > 1
, I y I :' 11. The

boundary p = 0 consists of the horizon (x = 0) and the northern (y = 1)
and southern (y = - 1) segments of the rotation axis. In terms of x and y, the
Riemannian metric  becomes

 = e
2 h(dP2 + dZ2) = e

2h P2(X2
_ Y2)

dx2
+

dy2

(76)X2 Y2

The Ernst equations (see Exercise 20) become

[ (X2 _ 1)6'X ]'X + [(1 _ Y2)6,Y 17Y

2
_ I)SIX ( 7EJX + Ajx ) + (1 - y2) Fjy (fEly

- -2
(X A +AA,y )

1 (77)
I - I F 12 - I A 12

and similarly for E i-+ A. They admit the simple solution

E - px + z qy I
A = AO ,

where p2+ q
2 + A2

= 1 (78)0
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with real constants p, q and A0.
The norm X, the twist potential Y and the electromagnetic potentials 0 and

(all defined with respect to the axial Killing field) are obtained from the above

solution by using the definitions (74) and (25). The off-diagonal element of the

metric, a = atdt [see (63)] is then computed by integrating the twist equation
(20). [Note that the Hodge dual in (20) now refers to the decomposition (63)
with respect to the axial Killing field.] Finally, the metric function h is obtained

from the Ernst potentials by integrating the equations (71).
The solution derived in the above way is the "conjugate" of the Kerr-Newman

metric. In order to obtain the Kerr-Newman solution itself, one has to consider

the quantities , dt and h, defined by

2 p2 2 P2 2h
=

2hX at X2 , &t = -at at -

X2
e e (79)

X

Since g is invariant under the simultaneous transformation (X, at, h) -+ (, at,
h) and t --- i

-  p,  o -+ ( = -t, the quantities , eit and h are indeed solutions

to the field equations. This additional step in the derivation of the Kerr-Newman

metric is necessary because the Ernst potentials were defined with respect to the

axial Killing field, (9(, * If, on the other hand, one uses the stationary Killing field,
(9t, then the Ernst equations become singular at the boundary of the ergo-sphere,
that is, the region outside the horizon where i9t is space-like. (A discussion of

this point and a derivation of the Kerr-Newman solution can, for instance, be

found in Heusler 1996b, Chaps. 4 & 5.)
In terms of Boyer-Lindquist coordinates,

r = M (1 + PX), COO = Y , (80)

one eventually finds the familiar form of the Kerr-Newman metric:

9 -
1 [-(,A - a

2 sin2V) dt2 + 2a sin2 19 (,A (r2+ a2)) dt dV

+ sin2,0 W2
+ a2)2 _ 6C,2 sin2 d) d(P2 + dr2

+ d192 (81)1 1,6
where a is defined by at =- a sin2 V. The expressions for the quantities A and E-7

show that the Kerr-Newman metric is parametrized in terms of the total mass

M, the electric charge Q, and the angular momentum J = aM:

'A r
2
- 2Mr + a2 + Q2, r2 + a2 COS2,d. (82)

Finally, the electromagnetic vector potential, A, becomes

A = Q r Idt - a sin2V dVJ. (83)
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7.3 The Uniqueness Proof

The uniqueness of the Kerr-Newman metric is obtained by integrating the Mazur

identity (34) and using Stokes' theorem. Since the components of  f are functions

on the two-dimensional Riemannian manifold ( ,  ), the Mazur identity (34)
with respect to the pseudo-Riemannian metric g- = -p

2 dt2 +  becomes

Tr (PtT) P TrN' 1 J l ' 2 JA) + Tr  lj , (84)1 IL I !P2 t (PJL) !Pl

where we recall that T1 is the relative difference of two configurations, Tf

4'2 4' 1, and JA denotes the difference of their currents, JA =- J2 - J1.
(Here we have again used for the inner product with respect to the two-

dimensional metric  .)
Let us now assume that  Pl and 4 2 are two solutions of the field equations

(68), t(pJj) = t(pJ2) = 0. Then the last term on the RHS of the Mazur

identity vanishes, and Stokes' theorem yields

t-lJL 5 4 2JA)  > (85)fa
S
p  d (Tr T-1) =fs P Tr (Pi

-

01

where S is the semi-strip f(x,y)lx > 1,Jyj < 11. The important observation
consists in the fact that the integrand on the RHS is non-negative: First, the
inner product is definite, since  is a Riemannian metric. Second, the factor p is

non-negative in S, since S is the image of the upper half-plane, p  ! 0. Third, the
current J, , is space-like, since the matrices P depend only on the coordinates of

(Z,  ). Last, the hermitian matrices P are positive, since the embedding of the

symmetric space SU(p, q)IS(U(p) x U(q)) in SU(p, q) can be represented in the
form ggt. (See, e.g. Eichenherr and Forger 1980, Boothby 1975, and Kobayashi
and Nomizu 1969 for this point.) Hence,

. tTr (IP 1 JA i  P2 JL) = Tr (,M i
-M t) 0 (86)

where M = g, lit 92. We therefore conclude that two solutions, 4il and  f2, Of
the field equations (68) are identical in the semi-strip S, if p d(Tr TI) = 0 on the

boundary aS, and if !Pl and C coincide at least in one point.
In order to prove the uniqueness of the Kerr-Newman solution, it remains to

show that

p d(Tr TI) = 0 on c9S, (87)

provided that !Pl and !P2 are two solutions of the field equations with the same

mass, angular momentum and electric charge. In order to establish this, one

needs the general asymptotic behavior and the regularity conditions on the hori-
zon and the rotation axis of the norm X, the twist potential Y and the electro-

magnetic potential A = -0 + io. Using the formula (Exercise 21)

Tr T1 =
(AX)2 + JAA 12 [JAA 12 + 2(Xl + X2)] + [,LY + i (AlA2 - A2A, )12

Xl X2
(88)
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we shall now argue that the boundary condition (87) is indeed satisfied. (Here
AX = X2 - X1, etc.)

Let us start by considering the asymptotic behavior. In a stationary and

axisymmetric spacetime, the norm X, the twist Y and the electromagnetic po-
tential A (all defined with respect to the axial Killing field) behave like

X = (1 _ Y2) [t12 X2 + O(X)] ,
Y = 2Jy(3 _ Y2) + O(X-1),

A = _(1 _ Y2)
M

[(MWI + O(x-')] + iQ [Y + O(x-')] , (89)

where M, Q and J are the total mass, the electric charge and the total angular
momentum, respectively, and /-i =_ M' _ (jlM)2 _ Q2. For x -4 oo, the leading
contribution in the numerator of (88) is (X2 _X,)2 = O(X2), whereas the leading
term in the denominator is (1 - y2)2jj4X4. (Note that pi = A2 ,

since 4 1 and 42
are required to be solutions with the same set of asymptotic charges.) Now using
p = O(x) we find p d(Tr fl -4 0 as x - oo.

On the horizon, that is for x = 1, the potentials must behave regularly,

X = 0(i), X-1 = 0(i), Y. = 0(i), Y'Y = 0(i),

A,x = 0(l), A,y = 0(l). (90)

This implies that d(TrTf) remains finite for x = 1 which, together with p = 0,
enables one to conclude that p d(Tr TI) vanishes on the horizon.

Finally, in the vicinity of the rotation axis, that is for y -+ 1, regularity
requires

X = 0(i - Y2), (1 _ Y2) X-1 X'Y = :F2 + 0(1 - y2),

+ 0(1 _ Y2), y; _ Y2)2),Y 4J
Ir
= 0((1

A i Q + 0(1 _ Y2), A,x = 0(1 _ Y2). (91)

Using this, one can show that X, Y and A are completely determined by the

asymptotic conditions (89) on the entire axis: One finds X = 0, Y = 4J and
A = iQ. The differences X2 - Xii Y2 - Yj and A2 - A, are, therefore, of

0(1 - y2) for y -+ 1, and so is X. Hence, d(Trfl remains. finite on the axis,
implying that p d(Tr TI) vanishes for y = 1.

This concludes the proof of the stationary and axisymmetric uniqueness
theorem, due to Robinson (1975) in the vacuum case, and to Mazur (1982)
and Bunting (1983) for electrovac space-times. The theorem establishes that
the Kerr-Newman metric (81) with vector potential (83) and parameters M,
a = JIM and Q is the only electrovac black hole solution with M2 > a2 + Q2,
vanishing magnetic charge, non-degenerate event horizon and stationary and

axisymmetric, asymptotically flat domain of outer communications.
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Abstract. The issue of black hole hair (i.e., the feasibility of stationary black hole so-

lutions not completely specified by the conserved charges defined at asymptotic infinity)
has received renewed attention in the last few years due, in part, to the unexpected
discovery of such solutions in various theories. In the present work, we give a brief

review of these developments emphasising in the point of view of the authors.

1 Introduction

As it is well known, for vacuum spacetimes, or for those whose stress energy
tensor is described by the electro-magnetic one, the variety of stationary black
hole solutions of Einstein's equations is very small [1]. Such solutions are com-

pletely characterized by three parameters (MADM = ADM mass, J = angular
momentum, Q = electric (or magnetic) charge) all of which are associated with

general conservation laws defined at asymptotic infinity, i'. That is, it is enougb
to "measure" those parameters at large distances from the black hole in order to

determine, with infinite accuracy, the stationary black hole we are dealing with

(although, in practice, it is not clear how we would know for certain that we are

facing such a type of black hole).
Moreover, by the time that a proof for such a complete characterization of

the black hole was practically established, it was possible to show [2], [3] that,
with the introduction of other types of fields, new kinds of stationary black holes
do not appear. Probably the most important of such results, by its simplicity
and generality, is the demonstration, due to Bekenstein [2], showing that the
introduction of a scalar field with "convex" potential does not produce new

types of black holes. Clearly, the scalar field 0 has to satisfy the Klein-Gordon

type equation, the relativistic equation for a scalar field, in the corresponding
spacetime:

V"V.o
19V

0,
'go

where V = V(O) is the scalar potential of the corresponding Lagrangian and

a = 0, 1, 2, 3 are spacetime indices.

The spacetime is taken such that it corresponds to a stationary black hole
with a bifurcate Killing horizon (see, Wald [4]). Let  a be the stationary Killing
field and t the Killing parameter that we take as one of the coordinates. We
foliate the spacetime by means of spatial hypersurfaces Zt (with t = const.)
such that they intersect themselves at the bifurcation surface S.
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Fig. 1 Spacetime diagram for an hypothetical static black hole configuration in the

Einstein theory with a scalar field. The shaded zone, M, is the integration region. We
can see in the figure the bifurcate Killing horizon.

Take M, the region bounded by the 3-dimensional hypersurfaces Zt, Zt, by
S, the bifurcation surface, and by asymptotic infinity. Multiplying Eq. (1) by
and performing an integration over M, we obtain

(0,7",Vao - OaV0 = )dk O'VaodSa (,VaoVao + 019V)dk.fi r 'go fa1 1 f, r 09a

(2)

The integration over 01 1 has three contributions: From Zt,, from Zt, and

from asymptotic infinity (there is no contribution from S because it has zero mea-

sure). Zt, and Zt, are equal (due to the invariance with respect to t -4 t + At)
and with opposite signs (the normals point outside and inside of M, respec-

tively). The contribution from asymptotic infinity is zero because 0 and Vao
must decrease fast enough in order to be compatible with asymptotic flatness.

Finally, we write the metric as gab == _C a b +  aVb + va b + hab, where hab is a

(spatial) metric on Z.

The stationarity of the solution implies that  aVaO = 0. Thus we have

0 = (gabVaOVbO + 0
av

)dll = (habVaOVbO + 0
OV

)dk. (3)fl f 00 f ao
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The first term in the last integrand is non negative, and so is the second

one, because the convexity condition corresponds to 0!2-v > 0 which holds, in
ao -

particular, for the usual mass term V = a202. Obviously, the only possibility
2

is then 0 = const = 0 (we are assuming, without loss of generality, that the

minimum of the potential is at 0 = 0).
This result, together with the uniqueness theorems in Einstein vacuum and

Einstein-Maxwell theory (see [16] for a review on that subject) and with the

heuristic arguments stating that any field that was in the exterior of a black hole,
would be either "radiated to infinity" or "sucked into the black hole", generated
an almost universal agreement about the validity of Wheeler's conjecture [5]:
"Black holes have no hair", understanding by hair any field that would be outside

the black hole (besides the electromagnetic field).
The first suggestions on the limitation of such arguments came from ideas

associated with quantum effects [61, analogous to the Aharonov-Bohm effect[7],
where there happens to exist quantum observables, such as phase changes, in

spite of the fact that the classical fields vanish. In the present work we are

not interested in this kind of quantum hair, but in the classical hair, which

corresponds to cases where there do exist classical observables which are not

associated with conservation laws in spacetimes with stationary black holes.

2 The discovery of hair

The first examples of black holes with hair, that is, stationary black holes which

require not only the values of conserved quantities defined at asymptotic infinity
for their complete specification, were found in 1990 [8] within the Yang-Mills
theory coupled to Einstein's relativity, the Einstein-Yang-Mills (EYM) theory.

It is not surprising that the examples where they have been found correspond
to configurations with high symmetry: Those hairy black holes are not only
stationary, but static as well, and besides, they have spherical symmetry.

The specific configurations are described in the following way: The most

general metric describing the exterior field of a black hole with such features can

be written as:

d'82 = -lie26dt2 + IC'dr2+ r2(dO + sin2 Od 02), (4)

where 1L = /_t(r), 6 - J(r), and the black hole horizon corresponds to the place
where the Killing vector, ( 0 )a becomes null, that is p(rH) = 0. It is usual to

at

write,u(r) = 1-2m(r)/r in such a way that the horizon is at rH if rn(rH) = rH/2.
Such a metric will then correspond to a static, spherically symmetric black hole

with regular horizon at r = rH iff Vr > rH ?n(r) > r/2, m(rH) rH/2, and 6(r)
is finite Vr > rH.

The configuration is asymptotically flat if p -+ 1 and 6 -4 (finite), when

r oo. (By means of a rescaling of the t coordinate, it can be reached that

6 0, when r -+ oo).
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The value of the ADM mass, MADM, of such configuration is then

MADM ::-- lim m(r), (5)
r-+ oo

The hairy black holes found in [81 correspond to the gauge theory based on

the SU(2), and the configuration of the gauge fields is described by the ansatz:

A = TlwdO + (T3 cotO + T2w) sin OdO, (6)

where Tj are the Pauli matrices. The result obtained is that for each value Of rHj
and for each integer n, there is a black hole characterized by the metric given
by Eq. (4), with horizon at r = rH, and the gauge field of the form described by
Eq. (6), with the function w passing through 0 exactly n times while varying r in

the interval [rH, oo). The corresponding MADM value turns out to be a growing
function of rH and of n as well.

Clearly, it is a solution for a black hole with hair, because for a given value of

MADM, the corresponding metric is not completely specified, in particular, the

value of rH can be determined only if, besides the value Of MADM, the integer n
is specified.

These spacetimes have a metric which is practically indistinguishable from
the Schwarzschild one for r > > rH, and it is only when getting closer to the
horizon that important differences are found. All these solutions turn out to be

unstable, and for this reason some researchers have ignored them, considering
that they have no importance. We think that this point of view is not justified.
Now it is known that all black holes, with the exception of those with surface

temperature r. = 0 evaporate, due to the Hawking radiation.

It seems possible to understand the existence of such solutions (under certain
additional technical assumptions, see [9]), as well as their instability, based on

the following topological argument. Let us take F, the phase space of the EYM

theory, corresponding to asymptotically flat initial data on a hypersurface Z,
with S2 x R+ topology, and internal boundary S, with S2 topology.

We restrict ourselves to those FA C F in which the area of S has a prefixed
value A, and we will study the behavior of the function MADM in F. The min-

inIUM Of MADM at rA corresponds to the Schwarzschild solution, and we label
this configuration as P1.

Clearly, by means of a large gauge transformation, we can obtain another

physically identical configuration, that is, another minimum P2 Of MADM at FA.
Now let us consider the integral curves Of -VcMADM at rA, that is, the curves

obtained by taking at each point the direction in which MADM decreases the

fastest, and then divide FA in sectors according to the final destinations where
these integral curves end. We define FA(1) C FA as the set covered by integral
curves ending at P1, and FA (2) C FA as the set covered by integral curves ending
at P2, etc.

The points P2, P3, etc. are physically equivalent to P, and, in particular,
correspond to the same metric. It is interesting that they allow us to establish
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IFA

FA

0
P

Q OP
2

FA I A (2)

Fig. 2 Representation of the phase space of the EYM theory, rA, and the integral
curves of -V' M.

(based on the assumption that FA is connected), the existence of a boundary
between the sectors FA (1), FA (2), etc. We call such boundary F

Now, it is clear that -VaMADM is tangent to F , and so their integral curves

must take us to a minimum Of MADM at F'. This point, Q1, is clearly an extreme

Of MADM at FA, and the value Of MADM at Q, has to be greater than its value

at P1. Thus we end with a static black hole with mass greater than the mass

of the Schwarzschild black hole for the corresponding value of the area at the

horizon.

This argument has the feature that it can be repeated infinite times: Besides

the point Q1, there exists another minimum Of MADm at rA, Q2, obtained
from Q, by a large gauge transformation and, given the fact that -VaMADM is

tangent to rA, we can perform exactly the same type of division of F in sectors

FA (1), FA (2), etc., and establish (under the assumption that FA is connected) the

existence of a new boundary between them, FA", etc. In this way, the argument
presented above explains the existence of the infinite series of static black holes

that we mentioned before.

On the other side, the relationship that apparently exists between the ex-

trema of the canonical energy 9, with fixed value of the area and angular momen-
tum, allows a further application of the above arguments in order to construct

infinite series similar to the last one, which would represent rotating black holes

with color [8]. In fact, in this theory it is possible to represent the canonical en-

ergy (for stationary configurations) as E -':-- MADM +QV, where Q is analogous to

the electric charge and V to the potential. Then, the first law of thermodynamics
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may be written as

6MADM =

87r
n6A + NJ - V6Q, (7)

and the arguments given above predicts the existence of an infinite series of col-
ored black holes which is associated with each of the special solutions contained
in the Kerr-Newman solution. So far, these solutions have not been found.

Other examples of black holes with hair have been found in theories like:

1) Non Abelian Einstein-Proca theory [10] in which a mass term is added to the
EYM theory that destroys the gauge symmetry.
2) Einstein-Yang-Mills-Dilaton theory [11] in which a scalar field is added to

the EYM theory that does not break the gauge symmetry.
3) Einstein-Yang-Mills-Higgs theory [10] in which a double scalar field is added
that preserves the gauge symmetry, but leads to a spontaneous symmetry break-

ing of the state with minimal energy. This case is of special interest because at

present this theory leads to the most accurate physical description of all the non

gravitational interactions existing in nature.

4) Einstein-Skyrme theory [12]. This theory tries to develop a phenomenological
model for hadronic physics.

All the solutions that have been found so far arestatic, spherically symmetric
(except for the example discussed in [13]) and classically stable only in cases 1
and 4, [14].

The discovery that black holes may have hair arises several questions, for
instance:

1. In which theories there exist black holes with hair? Or, in other words, is it

possible to determine a priori, without solving the field equations, if there
are solutions representing black holes with hair?

2. Which are the physical properties of these black holes? That is, the values
and relationships between the quantities which were necessary to completely
describe the old solutions: MADM, Q, J, K, S?, A, and the values of the new

quantities necessary to specify a particular solution in theories which allow
the existence of hair.

3. What happened to the physical argument put forward to support the "no
hair conjecture" that suggested that all matter fields present in a black hole

spacetime would eventually be either radiated to infinity, or "sucked" into the
black hole, except when those fields were associated with conserved charges
defined at asymptotic infinity?

4. What is the physical relevance of the hair of black holes?

In the following sections we briefly investigate these questions.
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3 In which theories there exist black holes with hair?

A partial answer to this question follows from the generalization of the argument
used in the description of black holes "with color" [9]. In those theories with

discrete symmetries that guarantee the "repetition" of the values of the canonical

energy in the corresponding phase space (with a fixed value of the area of the

internal boundary and other quantities like the angular momentum), we can

expect different extrema of the canonical energy associated with points called
ccmountain path" which, as we have seen, are associated with static or stationary
black holes.

Obviously, this argument is purely heuristic and cannot lead to concrete con-

clusions. In particular, if the phase space is disconnected the previous argument
is no more valid (i.e., the boundary F' turns out to be an empty set). An exam-

ple of this situation is that of a scalar field in a potential with double minimum

(for instance, V(O) - A(02 - a2)2) for which, on the other hand, Bekenstein's

theorem does not apply because the potential is not convex. In fact, there are

topological arguments that in this case suggest the existence of black holes with

hair [15]. However, it is possible to prove explicitly that in this type of theories

there are no static spherically symmetric black holes with hair [161, [171, [18].
In the first of these proofs one assumes that such a non trivial configuration
exists and proves that it is possible to construct a variation that changes the

value Of MADM without changing the horizon area. This contradicts the results

given in [91, where it is shown that a static black hole solution corresponds to

inital data that extremizes the MADM at fixed area of the internal boundary.
Nevertheless, a direct proof of this result consists in analyzing the specific ex-

pression of the conservation law for the energy-momentum tensor VAT'" = 0 of

configurations corresponding to this type of black holes. To this end, we consider

the line element (4) for which Einstein's equations may be written as

/-t 87rTtt + (I A)
1 (8)

r

6
47r

(Tt, - Tr (9)
A

where ' denotes the derivative with respect to r. Furthermore, the r-component
of the equation V,TA' = 0 becomes

e6(e-6Tr')' [(Ttt - T) + /-t(2T - 3(Tt+ Trr))]. (10)r t2pr

In the case of a theory with scalar fields, the components of the energy-
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momentum tensor for static spherically symmetric configurations are:

1
PTIr =

2

Ttt = To - P' - (0i)2 _ V(0,). (12)0 2

On the horizon /-t = 0 and therefore Trr(rH) < 0. On the other side, we have

that Ttt - Trr < 0 for any matter distribution which satisfies the weak energy

condition. Finally, 2T - 3(Tt' + Trr) = -2[/-1 + V] < 0.

Consequently, the right hand side of Eq. (10) is negative semidefinite and

hence e-6Trr is a decreasing function of r (or a constant). Since e-6Trr(rjj) : 0

it follows that there cannot be non trivial solutions with limr,,, Trr = 0 as it is

required for asymptotically flat solutions. This means that the only possibility is

0i == const which corresponds to a zero of V(0j). Consequently, in a theory with

matter described by scalar fields only, static spherically symmetric black holes

have no hair. Obviously, this result applies to any theory in which matter satisfies
the weak energy condition and the condition 2T - 3(Ttt + Trr) =- 6TOO - T < 0 is

fulfilled.

More recently, the study of this question has produced interesting develop-
ments in two directions. On the one hand, several no hair theorems have been

proved for theories involving scalar fields with non minimal couplings [18, 19, 20],
and for nonlinear sigma models [21]. On the other hand, new hairy solutions

have been found some of which challenge our preconceptions. One such example
is provided by static black hole solutions in theories involving Yang-Mills fields
that are not spherically symmetric, but only axisymmetric [13].

Another interesting case is the configuration discovered by Bekenstein [22]
in the theory of conformally coupled potentialless scalar fields which would be
the only case of hair associated exclusively with scalar fields. The interpretation
of this particular configuration as a static black hole solution of the Einstein

Conformally-Invariant Field equations has been challenged in [23] where it is

argued that in this case the energy-momentum tensor is ill defined at the horizon.

4 Which are the physical properties of black holes with

hair?

This question can be investigated by means of the new state functions which de-
scribe black holes with hair, i.e. the functions analogous to "Smarr's generalized
formula" [24]: MADM + VQ - 20J =

'A for the case of the Einstein-Maxwell
47r

theory. However, there are still no satisfactory analogous functions for more gen-
eral theories and, therefore, this question is still open. However, there has been

some advance in this respect obtained by proving the following inequalities:



8. Black Hole Hair: A Review 195

1) r. < 47rM/A for any stationary black hole if the matter satisfies the strong
energy condition [25].
2)r, < 47rM/A for any stationary black hole if the matter satisfies the dominant

energy condition [26].
3) r, < V7r/A for any static spherically symmetric black hole if the matter

satisfies the dominant energy condition [27].
4) M - 10  : S?J - UQ 0 for stationary black holes in Einstein-Yang-Mills

7r

theory [25].

5 On the "no hair conjecture"

Today we know that the non linear character of the matter fields plays an im-

portant role in the theories in which black holes with hair have been found. This

nonlinearity represents the interaction of the matter fields with themselves; and

this interaction may be understood as a kind of "glue" which connects the fields

in the region close to the black hole (where the tendency is that the matter fields

are "sucked" into the black hole) with the fields situated in the region far away

(where the tendency is that the matter fields are radiated to infinity). Due to

this interaction, a state of equilibrium is reached between these two different

tendencies.

This intuitive picture suggests that the hair of a black hole must be present in

both regions simultaneously. In particular, it would be not possible to restrict the

region where the matter fields are present to an arbitrarily small region around

the horizon. In fact, this can be proved for the case of spherically symmetric
black holes [28] in theories with matter fields which satisfy the weak energy
condition and T < 0. To this end, we write Eq. (10) in the following form:

e6(e -6r4Tr)' =

_'

[ (3p - 1) (T,' - Ttt) + 2pT] (13)r 2ti

As in the case of a scalar field, in these theories we have that Trr (,rH) < 0.

On the other side, the weak energy condition guarantees the fulfilment of the

inequality Tr - Ttt > 0. Thus the right hand side of the equation (13) is nowhere

positive except in those regions where 31-L - I > 0 (remember that p(rH) = 0).
The supposition that there are no other charges defined at asymptotic infin-

ity associated with the matter fields, indicates that these fields decrease faster

than 1/r2, and since the components of T,,, are at least quadratic in the fields,
the energy-momentum tensor decreases faster that r-'. This implies that the

function e-br4Trr < 0 at rH and must reach the value of zero when r - oo.

Moreover, since this is a decreasing function at least up to the radius r, for

which 3tt - 1 = 0, for it to grow towards zero it is necessary that the region with

T,,  4 0 must extend at least up the radius ri. On the other side, this radius is
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characterized by

ri = 3m(ri) > 3m(rj) = 3rH- (14)
2

This means that the region with hair (the "hairosphere") must extend at least

up to the radius  rH. The conjecture that this results applies for all stationary2

black holes is what we call the "no short hair conjecture" and is a subject of
further investigation.

Among the consequences of the existence of the "hairosphere" it is important
to mention the fact that it rules out the possibility of a static realistic shell with
finite thickness (made out of matter satisfying the energy conditions mentioned

above) laying completely within the hairosphere [29]. This result indicates certain

analogy between the hairosphere and the ergosphere.
Another important aspect of the existence of an upper bound for the hairo-

sphere follows when we consider theories with massive matter fields (like in

theories 1, 3 and 4). In these cases, one could expect that the region where the
matter fields are non zero is characterized by the distance M-1, with M being
the scale of the characteristic mass of the corresponding theory. This fact com-

bined with the result presented above leads to an upper bound of the size of the
horizon:

rH < rhai, < A4-1- (15)
2

Recent numerical investigations support this conjecture [14].

6 What is the physical significance of the hair of black
holes?

We do not know the correct answer to this question, but it would be very sur-

prising if, despite the fact that nature shows us the way to theories which present
this type of interesting solutions, nevertheless, these solutions do not play any
role in the description of some physical phenomena. In some sense, this reminds
us of the situation caused by the existence of several families of fundamental
constituents of elementary particle physics [30], and that induced Rabi [31] to

ask himself Who ordered this? at the time when the muon was discovered, the
unstable and heavier partner of the electron.
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Mrich, Switzerland

Introduction. During a lecture Prof. 't Hooft posed the question whether one

could, in principle, have a multi-black-hole process where the area of at least
one black-hole decreased, while the total sum of areas increased. However, if
stated carefully, the Area Theorem in fact asserts that locally the area cannot

decrease. Since black holes cannot bifurcate in the future, the only possibility for
a final black hole to be smaller than any initial one is that it was created in the
meantime. Hence, given that the Area Theorem holds, we answer the question
by the following

Assertion 1. Consider two Cauchy surfaces, Z and Z', with Z' to the future
of Z. Suppose there is a black hole at time Z' whose area is smaller than any
black hole area at time Z. Then all null generators of the future event horizon

intersecting the surface of this black hole must have past end points between Z
and Z'.

Below we will explain and justify this statement in a more precise fashion.
In doing this we shall take the opportunity to recall the arguments that lead
to the formulation of the Area Theorem. In particular, we wish to point out
that standard text-book proofs, as e.g. given in [2], [5], or [4], do not appropri-
ately deal with the fact that the future event horizon, and hence the surfaces of
black holes, cannot be smooth (C') in general. Hence the application of differ-
ential geometric methods needs extra justification, usually invoking additional
smoothness assumptions. In our discussion we assume piecewise C2-smoothness
of the black hole surfaces on the initial Cauchy slice. Since this need not be sat-
isfied in general, better arguments have to be devised to cover the most general
case. These might involve suitably smooth approximations of the horizon, or

the restriction to just topological and measure-theoretic arguments. But we are

presently unaware of such a proof in the literature. However, given the widely be-
lieved connection of the Area Theorem with thermodynamic properties of black
holes on one side (see Neugebauer's lecture), and the widely expressed hope
that this connection may be of heuristic value in understanding certain aspects
of quantum gravity on the other (see the lectures by 't Hooft and Kiefer), it
seems well motivated to call for a proof of the Area Theorem without additional

differentiability assumptions.

F.W. Hehl, C. Kiefer, R.J.K. Metzler (Eds.): LNP 514, pp. 199 - 202, 1998
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Notation, Facts and Assumptions. We assume the space-time (M, g) to be

strongly asymptotically predictable (in the sense of Wald 1984) and globally
hyperbolic. (It would be sufficient to restrict to a globally hyperbolic portion, as

in Thm. 12.2.6 of Wald 1984.) 1+ (scri-plus) denotes future null infinity, J- (21-- )
its causal past and B := M - J- (14-) the black-hole region. Its boundary,
aB _: H, is the future-event-horizon. H is a closed, imbedded, achronal three-

dimensional C' submanifold of M (proposition 6.3.1 in Hawking and Ellis

1973), where C` denotes Lipschitz continuity. H is generated by null geodesics
without future end points. Past end points occur only where null geodesics,
necessarily coming from J- (-E+), join onto H. Such points are called "caustics"
of H. At a caustic H is not C' and has therefore no (continuous) normal. Once a

null geodesic has joined onto H it will never encounter a caustic again, never leave

H and not intersect any other generator. See Box 34.1 in [41 for a lucid discussion

and partial proofs of these statements. Hence there are two different processes

through which the area of a black hole may increase: First, new generators can

join the horizon and, second, the already existing generators can diverge.
Let Z be a suitably smooth (below we choose C') Cauchy surface, then

B := B n Z is called a black-hole region at time Z and W := H n Z = M
the (future-event-) horizon at time Z. A connected component Bi of B is called

a black-hole at time Z. Its surface is Wi == aBi, which is a two-dimensional,
imbedded C` submanifold of Z. In general W may contain all kinds of caustic

sets, like dense ones and/or those of non-zero measure, which are not easily
dealt with in full generality. Below we shall avoid this problem by adding the

hypothesis of piecewise C'-smoothness.
By exp we denote the exponential map TM -+ M. Recall that expp(v)

7(l), where -y is the unique geodesic with initial conditions -Y(O) = p E M and

 (0) v c Tp(M) -
For each p it is well defined for v in some open neighbourhood

of 0 Tp(M). One has -y(t) = expp(tv). We shall assume the Lorentzian metric

g of M to be C', hence the connection (i.e. the Christoffel Symbols) is C' and
therefore the map exp : TM --* M is also C'. The last assertion is e.g. proven
by [3].

Local formulation of Area Theorem. We consider two C2 Cauchy surfaces
with Z' to the future of Z. The corresponding black-hole regions and surfaces

are denoted as above, with a prime distinguishing those on Z. We make the

assumption that W is piecewise C2, i.e. each connected component Wi of W
is the union of open subsets which are C2 submanifolds of M and whose

measure exhaust that of'Hi: 9('Hi - Uk V) = 0, where p is the measure on W
induced from the metric g.

For each point p E V there is a unique future- and outward-pointing null
direction perpendicular to which we generate by some future directed 1(p) E

Tp (M). We can choose a 0-field p  -+ I (p) of such vectors over W The geodesics
-yp : t  -+ -yp (t) : = expp (t1 (p)) are generators of H without future end point. This

implies that each -yp cuts Z' in a unique point p' c V at a unique parameter value
t = 7-(p). By appropriately choosing the affine parametrisations of -yp as p varies
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over W, we can arrange the map -r to be also C1. Hence p -+ m(p) := r(p)I(p)
is a null vector field of class C1 over Hk. We can now define the mapi

!pk : Hk Rt, P,_4 4jk(p) expp(m (p)),i i i

which satisfies the following

Lemma. 4i is (i) C1, (ii) injective, (iii) non- contracting.
2

(i) follows from the fact that the functions m and exp are C'. Injectivity must

hold, since otherwise some of the generators of H through W would cross in the

future. By non-contracting we mean the following: Let p and p' be the measures

on W and W' induced by the space-time metric g. Then I-i[U] : , p[4i(U)] for each

measurable U C Wik. Assuming the weak energy condition, this is a consequence
of the nowhere negative divergence for the future geodesic congruence p F-- - p
(lemma 9.2.2 in Hawking and Ellis 1973), as we will now show.

Proof of (iii): Set Hik := Up't expp(tl(p)), Vp E V and Vt E R+, which is a C'-
submanifold of M. Let 1 be the unique (up to a constant scale) future directed

null geodesic (i.e. VI 1 = 0) vector field on H parallel to the generators. Then 0 <

V 14 = 7r4V 1', where 7r denotes the map given by the g-orthogonal projectionA V A

T(M)IHi - T(H ), followed by the quotient map T(Hik) - T(H )/spanflj.11
z z

Note that tangent spaces of C'-cross-sections of Hik at point p are naturally
identified with Tp(Hik)/spanf1(p)J. Since 7r,41' - 0, we also have 7rpvk'  ! 0

V

for k = Al and any Cl-function A : Hik -+ R+. Hence this inequality is

valid for any future pointing Cl-vector-field k on Hik parallel to the genera-
tors. Given that, let then t  --+ Ot be the flow of k and A(t) := pt[,Ot(U)] :=

fo,(U) dpt, then A(t) = fo,(U) 7rP(t)VIk'(t) dpt  : 0, where ir(t) projects onto

T(Ot(V))/spanJIJ, k(t) - and jit = measure on Ot(V). Now choose
I dt'

k such that Ot=1 = 4i . Then A,[,pk(U)] _ P[UI% i fo' dtA (t)  ! 0

Consequences. From proposition 9.2.5 of [2] it is known that black holes cannot

bifurcate in the future. Hence all surface elements Wik of the i-th black-hole

at time Z are mapped via  P into the surface of a single black-hole at time

Z', whose area therefore cannot be less then the area of Wi. Note that this

does not exclude that the number N' of black-holes at time Z' might be bigger
than their number N at time E. But it implies that this can only be achieved

by an intermediate formation of K new black-holes 61 ... B'K, where K >

N'- N. That these black-holes are 'new', i.e. not present at time Z, means that

all generators of H which intersect Wt, U U WK must have past endpoints
somewher, between Z and Z'. This proves Assertion 1.

There is another interesting consequence of our analysis: Consider a config-
uration of two black holes which merge between Z and Z'. We assume W1, W2
and V to be homeomorphic to two-spheres. Suppose Wi did not contain any

caustics, i.e., that W, was a Cl-submanifold of Z. Then we can construct a map
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 Pj : W, -+ V analogous to the construction of 4i above, but now defined on all

of 'H1. The Cl-condition on 'R, now implies that Pj is C'.  Pj is also injective
for the same reason as given for Ck. Since some generators that cut V come

from ?12, the map 4i, cannot be surjective. If p' is a point of V not in the

S2 -H, _4 h _ fp/1 c 2.image of 4ij, we have a continuous injective map R

But this is impossible since such a map does not exist. One way to see this is

through a theorem in topology, due to Borsuk and Ulam (proven e.g. in chapter
9 of Amstrong 1983), which says that any continuous map S2 -+ R2 identifies

some pair of antipodal points. In particular, it cannot be injective. Hence we

obtain a contradiction to the assumption that W, was C'. The same applies of

course to W2, or any other black hole that is going to merge at some later time.

Note that it does not matter how far back in time Z actually is. Thus, under

the assumption of spherical topologies for the surfaces of the black holes (which
should not be essential), we have shown the following

Assertion 2. At no time before merging can the surface of a black hole that is

going to merge be without caustics.
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Abstract. In this review, we derive from a single canonical metric all electrovac so-

lutions with cosmological constant for an algebraically general electromagnetic field,
aligned along the Debever-Penrose directions of the Weyl tensor of Petrov type D.

Among them, because of their interpretation as black holes, the Reissner-Nordstr6m

static solution and the Kerr-Newman stationary axisymmetric solution are singled out.

1 Introduction

During the last three decades extraordinary progress has been made solving the

Einstein-Maxwell equations in the presence of two commuting Killing vectors.

One of the most important family of solutions is that related to charged black

holes, i.e. to the static Reissner-Nordstr6m black hole and the rotating Kerr-

Newman black hole. In this report we shall derive the full class of type D metrics

with general Maxwell fields, starting from a single line element containing the

above mentioned solutions as particular cases.

In order to give a self-contained description of the gravitational fields we are

dealing with, we shall briefly revisit the null-tetrad formalism we will use (for a

more detailed review see Kramer et al. [8]) .
The null-tetrad frame is given as

a
= 19a a

4 19t, I -

e e Im, in, 1, kj, while the associated coframe reads

e fn,, dxt' e
2

M. dx", e
3 k,, dx" ,

e4 = -1
.
dx"

, (1. 1)

where ell' = m"
, e? fh", e34 = P, and e44 = V, such that kl'l,, = -1,

ml'fn,, = 1, and all the remaining scalar products between them vanish. Thus,
the metric reads

a b 1 2 3 4
9-gabe oe =2e Oe -2e Oe (1.2)

The connection one-forms Fa b = ra b, e' associated with the tetrad (1.1) are

determined by means of the first Cartan structure equations

dea + _Va b A eb = 0, d9ab = Fab + -Fba = 0
- (1.3)
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Consequently, in four-dimensions there are only six independent connection one-
forms which can be chosen as r4l, r32, r12 + r34, and their complex conjugated
partners r42 ::::::: P41, r3l -:::: P32, -r12 + r34 r12 + P34. Here the bar denotes

complex conjugation. The expressions Of rab in terms of the Newman-Penrose

coefficients (see below) are given by

1 2 3 4r4i = ae + pe + 7-e + ne (1.4)
2 3

_

4r32 = -pel - Ae - ve 7re (1.5)
2 3 4r12 + r34 -20el - 2ae - 27e - 2,Ee (1.6)

-r12 + r34 -2del - 2fie2 - 2 y-e3- 2  e4. (1.7)

The coefficients of r4l = r4la e' and r32 have certain geometrical meanings,
which are assigned to the real (null) congruences k and I associated with them,

F411 = or = -ka;b MaMb, F412 = p = -ka;b Main-b = _ (0 + iW) , (1.8)

where o- represents the shear of k. For a -- 0 the congruence is shear-free. 19
describes the expansion of k, and w the twist of k. For 0 = 0 the congruence is

divergence-free and for w = 0 the congruence is twist-free.

F413 = -r = -ka;bMalb, F414 = r, = -ka;b rnakb (1.9)

The parameter r. represents the geodetic property of k. For r. 0, the congruence
is geodetic. For the 1 congruence one has

F321 = Y = -1a;b fn-aMb = _((g + iU;) (expansion twist), (1.10)
F322 = A = -1a;b fnaFnb (shear) , (1. 11)
F323 = I-' = -1a;b Malb (geodetic property) (1.12)
F411 = 7r - -1a;b ljn- a kb

. (1-13)

The geometrical meaning of a, 3, -y and E is more involved.
The second structure equations

a a a ddF b + F 'S A Fb = -R bcde' A e (1.14)
2

determine the 20 independent components of the Riemann tensor Ra bcdi which
can be uniquely expressed in terms of irreducible pieces with respect to the

general Lorentz group, i.e. the Weyl tensor Cabcd (10 components), the piece built
from the traceless Ricci tensor Sab (9 components), and the scalar curvature R.

The Weyl tensor is related with the Riemann tensor as follows

Cabcd = Rabcd + IR (gacgbd - gadgbc)
6

1
gacRbd - gbcRad + gbdRac - gadRbc) (1-15)

2
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while the traceless Ricci tensor reads

1 1
Sab = Rab - -gab R Tab - -gabT (1-16)

4 4

The invariant classification of the Weyl tensor - the Petrov classification - is

more easily accomplished by using the self-dual Weyl tensor

*Cabcd = Cabcd + iEabrsCr"cd
1 (1.17)

2

which allows the representation

*Cabcd = 2TIOUabUcd + 2Tf, (UabWcd + WabUcd)
+ 2T/2 (UabVcd + VabUcd + WabWcd)
+ 2T13 (VabWcd + WabVcd) + 2T4VabVcd (1.18)

with

Wab Mafhb - Mb?7na - kalb + kbla 1 (1.19)
Vab - kaMb kbMa i Uab - -la?:n-b + lOn-a

U, V, W, U, f/ and W represent the bivector basis.

By solving the eigenvalue equations I*CabcdXcd - A Xabi where Xcd is an
4

eigenbivector, one establishes the following Petrov types: I, II, D, III, N, and

0, to which one associates the existence of the corresponding null eigenvectors
(1, 1, 1, 1), (2, 1, 1), (2, 2), (3, 1), (4), and (0) respectively. Each entry corresponds
to the number of coincidences (common alignments) of the four null directions.
For the classification of the Ricci tensor see Kramer et. al. [8]

On the search for exact solutions in Einstein's theory, it is possible to combine

different procedures in looking for solutions of a certain Petrov type with pre-
determined geometrical properties of the null eigencongruences, e.g., or within

given Killing symmetries.
In the null-tetrad formalism, the Einstein equations are contained in the

second Cartan structure equations, which read

A dF41 + F41 A (1721 + F43) =
I
R41cd e' A e

d

2

T11 S14 e
1 A e

2
+

1
Sil eI A e

3 To el A e4+ Tf2 +
I
R e

2 A e3
2 2 12

1
S44 e-2A e4 Tf, + IS14 e-

3
A e

4 (1.20)
2 2

ddT32 - F32 A (F21 + F43) _R32cd ec A e
2

1 2 3 2 3 +
4T13 - S32 e A e S33 el A e - Tf4 e A e T/2+-R elAe

2 2 12

2 4 1 3 4
+ -S22 e A e + T13+ S32 e A e (1.21)

2 2
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C : d [121 + F431 + 2F32 A F41 :-:::::

1
(R21cd + R43cd) ec A ed

2

-
- 2T/2 - S12 -

1
R e'Ae2

+ S13 el A e
3
- 2T/1 el A e4+ 2!P3 e

2 A e3
12

-S24 e
2 A e

4
_ 2T/2 + S12 R e

3 A e4 (1.22)
12

The plan of the paper is as follows. In Sec. 2 we revisit the basic metric and
its corresponding field equations. In Sec. 3 we present five different families of
static electrovacuum solutions. In Sec. 4, the full class of stationary axisymmetric
solutions is obtained. In Sec. 5 the results are discussed.

2 The metric and the basic equations

The starting point in the search for stationary axisymmetric exact solutions of
the Einstein-Maxwell equations with cosmological constant is the metric

9 =
1 -,A

dx2
+
P

(d-r + Ndo,)2+
'6
dy2- q (d-r + Mdu)2 , (2.1)H2 P ZA Q 'A

where H = H(x,y), P = P(x), Q = Q(y), N = N(y), M = M(x), and A =

M - N.

The coordinates fx41 = fx, y, 7-, al are assumed, at this level, to range from
-oo to +oo. Since we are assuming stationarity for a, and axisymmetry for a,
one has to impose the signature requirements ,AIP > 0 and A/Q > 0. Regularity
and elementary flatness condition on the rotation axes constrain the range of 0'.

The coframe we choose reads

P1 1 ' A
dx i

P
(d-T + Ndo,) =

elv4p  aVf2_ H
L

P e2

QQ
dy +

Q
(d7- + Mdo,)

e

(2.2)
Q e42 H Q V 

L

We assume the electromagnetic field strength F,,b to be aligned along its eigendi-
rections e3and e4and, accordingly, it has nonvanishing components F12 and F34
Thus, the electromagnetic two-form

w =

I
(F,, + *F,,,) dx" A dx' (Fab + *Fab) e

a A e
b (2-3)

2 2
= d (Audxt' + *A,, dx1) (2.4)
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acquires the simple form

(F12 + F34) (e' /\ e2- e
3 A e')

I- (E + i *B) [(d-r + Mdo,) A dy + i (d-r + Ndo) A dx] (2-5)jT2
where E F347 i*B = F12, and * is the Hodge dual operation. In terms of the
field quantities, the electromagnetic invariant is given by

F = IF4,F4' + 1
" F -

1
(E + i*B)2 (2-6)

4 4 ,,
F4' -

2

The integrability of w requires that dw = 0, which is equivalent to

9 + i*B + i*B
a '

H2 iaY H2
(2.7)

max
E+i*B

+
E+i*B

Mx - iNay
E+i*B E + Z*B

Ny = 0,
H2 H2 H2 H2

(2.8)

where M,, = axM and Ny = ayN. Inserting (2.7) and the derivatives of A
M - N into (2.8), we obtain the Maxwell equations to be solved

ax In 'A
9 + i*B Ny

0,
H2 A

E+i*B MX
ay In A

H2
0. (2.9)

The integrability of (2.9) is guaranteed if

MX N
ax -(9

Y

I_'Y - 0 (2.10)
ZA 'A

or, after performing the derivatives, by

A(MXX
_ NYY) _ (MX)2 _ (NY )2 = 0 (2.11)

Equivalently, the equation (2.9) for the electromagnetic field quantities can be
written as a one-form equation

d In
A

i
MX

dy + NYdx = 0 (2.12) fi2 (S + '*8)
'A 'A

The only nonvanishing complex Weyl coefficient is Tf2 with

4
'A

T/2 =
I

Pxx - 3
MX

PX -2P
M..

- 2(
M- )2 +   Y 2-

H2 3

+ Qyy + 3
N
YQy+2Q +2( Ny )2 _ (MX 2

+
Ny

P -2
M.

P +
MX

Qy+2
Ny

Q (2-13) ZA ( X '6 ) ZA ( "A )  
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since all the other Weyl invariants can be expressed as powers of this quantity.
Thus, !P2 is by itself an invariant quantity. Moreover the null directions e

3 and
e4 are oriented along the double null eigenvectors of the Weyl tensor and, in

addition, along the eigendirection of the electromagnetic field. Consequently, we

are dealing with an aligned electromagnetic field in the sense of the coincidence
of the proper null directions. Furthermore, the nonvanishing components of the
traceless Ricci tensor are

S12 :-- S34 - -F342
+ F122 W + *L32) (2-14)

Thus, the Einstein field equations to be solved are:

:-,6(MX.
_ NYY) _ (MX)2 _ (NY)2 =: 0.D(MN) -

X (2.15)

Sil 4AH, x - (M, x + Nyy)H = 0, (2.16)
S33 4AHyy + (Mxx + Nyy)H = 0, (2.17)

ReS13 2AHxy - M, Hy + NyH , = 0, (2.18)
IMS13 2MxHx + 2NyHy - (Mxx + Nyy)H = 0, (2.19)

Hx Mx MXX MX 2 Y
MxHxS = S12 Pxx - 2PX - + - 2P (L)2 -2

H ZA A A H

Hy Ny Nyy MX)2 + (NY)2 Ny Hy
'

Qyy + 2Qy
H

-

.,A 2Q
' A

+ (-z- 'A
-2

zA H

+4
' '

(S2 + *L32) = 0, (2.20)H2
2p )2] 2QYYR : H x 

- 6HHxP - 4P [HHxx - 3(Hx + H - 6HHyQy
-4Q [HHyy - 3(Hv )2] + 4AA = 0. (2.21)

The complex rotation of the null eigendirections e
3 and e

4 is given by

3 4) Q -Hy 1 Ny i Mx
-

QZ(e)=Z(e =H - + -- + =H [0 + 0] . (2.22)2QA 2QA2A LH 2 A 2 A
.

2A

Therefore, one can subclassify the solutions of the above system of equations by
means of the expansion 0 and the twist  D of the principal null congruences e

3

and e
4

In the next sections we shall derive all stationary axisymmetric type D so-

lutions with aligned electromagnetic field, in the sense mentioned above, with

cosmological constant. These solutions are characterized by the invariants T/2, 9,
*B, and R = -4A. In general IP and E(*B) depend on the choice of the tetrad
basis. In the present case, the Weyl and the electromagnetic invariants are ex-

2

pressed in terms of Tf2 and E (* B) as =
2 and T = -(S + i*B), respectively.C T/2
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3 Static gravitational fields

Let us begin with the simplest family of static solutions. Assuming N = -1/2,
M - 1/2 (,A = 1), the principal null directions e

3 and e
4
are geodetic, shear-

free and twist-free. In the branch with H = H(x), the principal directions are

additionally without expansion, while for H = H(y), Hv 54 0 the principal null

congruences are expanding.
The equations for H (2.16)-(2.19) are

Hxx - 0, Hyy - 0, Hxy - 0, -4 H = a + Ox + - y, (3.1)

where a, 3 and -y are integration constants. The electromagnetic field equation
(2.12) integrates to

(E + i *B) - H2(e + z *g) (3.2)

with constants e and *g.
Introducing new coordinates do = d-r - 'do, and dt = d-r + 1da, the metric

2 2

(2.1) reduces to

9 _=

I dx2
+ Pd02 +

dy2
- Qdt2_ (3-3)

H2 P Q

The remaining S- and R-equations (2.20) and (2.21), respectively, should be

integrated separately.

3.1 Bertotti-Robinson metric

The simplest solution corresponds to a spacetime filled with a homogeneous
electromagnetic field. The metric (3.3) splits into two 2-surfaces of constant

curvature. By putting H - I (one can always achieve this simplification by
performing scale transformations), the S- and R-equations, (2-20) and (2.21),
take the form

Pxx + QYY + 4A 0, (3.4)
Pxx - Qyy + 4(e2

+ *q2) 0 (3-5)

Thus, substracting (3.4) and (3.5), one obtains

P - po + plx - (A + e
2
+ *g2 )X2

, (3-6)
2 2 2Q=qo+qly-(A-e 9 )y (3-7)

where pi and qj are constants. As mentioned above, the metric can be written
in the form of two 2-surfaces of constant curvature:

9 = 92 +  2 1 (3-8)

92 = dx2+ P d02, P PO + P1 X + P2 X2, (3-9)
P

92 =
dy2- Q dt2

, Q qO + qly + q2 Y2. (3-10)
Q
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Since these two metrics shall be encountered in subsequent sections, we will

rewrite them in terms of more suitables coordinates. For 92, the only nonvanish-

ing component of the Riemann tensor is given by

P 1
R1212 ::= P2 = const. (3-11)

4 2

By means of shift and scale transformations, we arrive at the well-known canon-

ical form of this metric:

P2 = _a2 : 92
dx2

a2 X2d02
I - a2X2

12 (do2 + sin2 OdO2) (CeX = Cos 0) (3-12)
a

4
2
+P2 = 0 : 92 [(dvfplx X)2 d02]1 X

1

4
(d02 + 02 d02) (P,X = 02) (3-13)2

Pi

F-2 dX2
+ (1 + CX2X2 02PO - H > 0 92 1+CX2X2 )d4 a

-12, (do2+ cosh2OdO2) , (ax sinh 0)
P2 Cf2

P2
a (3-14)

PO - < 0 92
dX2

+ (Cf2X2 - 1) d024 _C'TX__T___

-1- 02 + sinh2OdO2)aT (d (ax = cosh 0)

These canonical expressions for the 92-metric can be gathered in the form

92 4
d(d(

17011 (3-15)
+,EC,2(()2

with

'E 1 a( tan(0/2) exp io, (3-16)
f = 0 a2) pC = Oexpio, (3-17)
E = -1 a = tanh(0/2) exp io. (3-18)

Analogously, for the  2-metric we have

q2 - _02 :  2
dy2

(1 _ 02Y2 )dt2 =
1

(dZ2 - sin2zdt2) (3-19)02y2 02

t2] = Z2 _ Z2 t2)
4

Y) 2
+ (" q, Y) 2

4
q2 = 0 :  2

q
2

d ,,Fq d
q
2 (d d (3.20)

1 1

q2 = 02 :
-

=

dy2

- - WY2 ::F 1) dt2 =
1

dz2
_

(sinh2z dt2 (3.21)92 02y2 T 1 021  cosh2Z)
which can be gathered in the form of

 2 = 4
dudv

V = -110, 1
1 (3.22)

(1 + V,32UV)2 I
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with

v = 1, 3u tan(z/2) exp t, 3v - tan(z/2) exp(-t) (3.23)
V = 0(-02 qu = z exp t, qv - z exp(-t) , (3.24)
v = - 1, Ou = tanh (z / 2) exp t, Ov = tanh(z / 2) exp t) . (3.25)

Returning back to the Bertotti-Robinson solution [1], one can write the cor-

responding metric in the form

g = 4
d( d 

- +4
du dv

(3.26)
(1 +,Ea2 ( ) 2 (1 + V02UV)2

where E, v 1, 0, 1
. Nevertheless, since

a2(,6 = 1) = (A + e
2
+ *g2 ) I E = 0 (= a2): -A = e

2
+ *g2' (3.27)

02(V = 1) - (A -e2
_ *g2 ) I

V = 0 (= 02) : A = e
2
+ *92 , (3.28)

one has to take care of the values over which A ranges.
We have the following possible Bertotti-Robinson metrics

9 = 92(E = 1) +  2(V - -1) with JAI < e
2 + *g2.

For A = 0, a
2
- 02 = e

2 + * g2' this particular solution of the B-R class is

commonly written as

9=
1

[d02 + sin2 OdO2 + dZ2 - sinh2 zdt2 (3.29)a2 I I

and is the single homogeneous conformally flat solution of the Einstein-
Maxwell equations with homogeneous general electromagnetic field.

2. 9 92 (1E = 1) +  2 (V = 1) with A > e
2 + *g2.

3. 9 92 (E = - 1) +  2 (V - 1) with A < - (e2 + *g2).

4. 9 92 (6 = 0) +  2 (V = 1) with A = - (e2 + *g2).

5. 9 = 92(1E = 1) +  2(V = 0) with A = e
2 + *g2.

The class of Bertotti-Robinson solutions is characterized by

Tf2
I
Ai R = -4A, E + i *B = e + i *g. (3-30)

3

If A vanishes, the Bertotti-Robinson metric becomes conformally flat. For van-

ishing electromagnetic field, i.e. e
2 + *

9
2
- 0, one arrives at the de Sitter space.
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3.2 Reissner-Nordstriim class of solutions

By putting 3 = 0 in (3. 1), we have H = a + -yy -* H = y. Then one is dealing
with a class of metrics with diverging (geodetic, shear-free, twist-free) principal
null directions of the Weyl tensor. The R-equation (2.21) reads

2pY xx + Y2QYY - 6yQy + 12Q + 4A = 0 (3-31)

which is a separable equation:

Pxx = 2P2 P=PO+PlX+P2X2 (3-32)

Y2QYY - 6yQy + 12Q = -4A - 2y2
P2 (3-33)

The equation for Q is an inhomogeneous Euler equation. The homogeneous part
can be solved by Q _ yk ,

and (k - 3)(k - 4) = 0. The general solution reads

Q = -

A
- P2Y2+ q3Y

3
+ q4Y4 - (3-34)

3

Substitution of P and Q into the S-equation (2-20) leads finally to:

2P PO + P1X + P2X (3-35)
A

2 3 2 * 2 4Q
3
- P2Y + q3Y + (e + 9 )y (3-36)

The electromagnetic field (3.2) is given by

S + i q3 = Y2 (e + i *g) (3-37)
w - -(e2+ *g) d(ydt + ixdo) (3-38)

and it is characterized by the Weyl curvature coeficient

3 2 * 2 42Tf2 = q3Y + 2(e + g )y (3-39)

Therefore, the metric of the Reissner-Nordstr6m class of solutions [12] can be

written as

9=
4 d( d 

+
1 dy2

- Qdt2 (3.40)
Y2 (1 +,Ca2( )2 y2 Q

Performing a scale transformation together with a change of the variable y = 1/r7
it is possible to bring the metric (3.40) into the form

g = r
2 dC d(

2
+

dr2
_ Qdt2 (3.41)

(1 +'E( ) Q

'E = 17 07 -1, (3.42)

Q =,E +
q3
+

(e2 +2*g2) Ar2 (3.43)
r r 3
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The electromagnetic field is now given by

+
I

(e + i *g), (3.44)
r2

Cos

w -(e + i *g) -dt + i 02 do = d (A,,dx" + *A,,dx") .(3.45)
r cosh 0

Consequently, the electromagnetic potential one-form A reads

Cos 0

A -

- edt + *g 02 do. (3.46)
r cosh 0

The function in the parentheses corresponds to the different possible values of

e = 1, 0, -1 respectively. So, the metric (3.41) reduces to

sin2o dr2
g = r

2 d02 + 02 do2
+ - - Qdt2 (3.47)

sinh20 Q

Assigning values to the remaining constants, it is staightforward to find different

static solutions.

3.3 The proper Reissner-Nordstr8m solution: the RN black hole

Choosing E = I in (3-47), we arrive at the spherical symmetric asymptotically
flat Reissner-Nordstr6m solution [15]

g r2(d02 + sin2OdO2) +
dr2

Q dt2' (3.48)
Q

with

Q
2m

+
e2

(3.49)
r r2

e
Ao - (3-50)

2m e
2

T/2 __3+2 4 (3-51)
r r

This solution is singled out amongst the Reissner-Nordstr6m class since it repre-
sents the gravitational field of a static charged mass. It is the only static solution

which can be thought of as a static black hole, endowed with mass m and charge
e. Switching off the charge, one arrives at the Schwarzschild solution.
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3.4 Anti-Reissner-Nordstr6m class of solutions

In a similar way, for H = x, it is straightforward to obtain from (2.20) and (2.21)
the metric

I- dx2

Pdo-2
+

I dy2

Qdr2 (3.52)9 = j2Y P
+

X2 Q

where

P = + 'Ex2 + 2nx3
_ (e2+ *92)x4 (3-53)

3
2Q = I - 'Ey (3-54)

w = d [(e + Z *g) (yd-r + ixdo,)] , (3-55)

which does not allow for an interpretation as a black hole. The Weyl component
T/2 is given by

3
_

2 4!P2 = nx e x (3.56)

3.5 Levi-Civita metric

The principal null congruences of the Weyl tensor of this metric structure are

(geodetic, shear-free) diverging and with twist [9]. By scale and shift transfor-

mations, the function H (3.1) can be rewritten as

H = x + y. (3-57)

Then the R-equation (2.21) acquires the form

(X + Y)2 (pR:=
xx + QYY) - 6(x + y) (P , + Qy) + 12 (P + Q) + 4A = 0.

(3.58)

Applying the operator 9x,9x(9yay to R, one arrives at the separable equation

PXXXX + QYYYY = 0 (3-59)

whose solution reads

2 3 4P-PO+PlX+P2X +P3X +VX (3.60)
2 3

_

4Q = qO + qly + q2Y + q3Y VY (3.61)

where pi, qi and v are integration constants.

Inserting P from (3.60) and Q from (3.61) and their derivatives into the

R-equation (3.58) as well as into the S-equation (2-20), one finds:

P = ^f
A
+ P1X + P2X

2
+ P3X3- (e2 + *g2 )X4 (3-62)

6

Q - +
A

+ PlY - P2Y
2
+ P3Y

3
+ (e2 + *g2)y4. (3-63)6)
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This solution is characterized by

2T,f2 =: (X + Y) 3[P3 - 2 (e2 + *92)(X _ Y)] ,
R = -4A, (3-64)

with the electromagnetic field (3.2) given as follows:

S + i *L3 = (X + Y)2 (e + I *g) (3-65)
w - -(e + i *g) fydt + Mdol (3-66)
A = -eydt + *gxdo. (3-67)

According to the work by Kinnersley-Walker [7], this solution can be thought
of as the field produced by the motion of two accelerated charges.

4 Stationary axisymmetric class of solutions

In this section we present the most important classes of type D solutions of the

Einstein-Maxwell equations with two commuting Killing vectors, namely the

NUT-Carter B(+) [3] and the Plebanski classes [4].

4.1 NUT-Carter B(+) metrics

We now consider the class of metrics such that

N = n = const., M = n + m exp(2ax), (4.1)

as solution to the D(MN)-equation (2.15). The equations for H (2.16)-(2.19)
become

H--,, - a2H = 0 = Hyy - a2H
, H, - aH - 0, (4.2)

hence

H = exp(ax) (a cos ay + b sin ay) h exp (ax) cos a (y - yo) (4-3)

Substitution in the R-equation (2.21) yields

-4A
M

[1 + tan2 Ct(y _ YO)] = Pxx - 6aPx + &e2p + QYY + 6a tan a(y - yo)Qyh2

+ 4QC,2 [I + 3 tan2
CC (Y _ YO)l (4.4)

Equation (4.4) separates into P and Q. For P we have

Pxx - 6aPx. + 8C,2p = &e2P2 (4.5)

with solution

P = P, exp(4ax) + po exp(2ax) + P2 (4.6)
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The equation for Q acquires a very simple form after introducing a new coordi-

nate I tan a (y - yo) and a new function Q (12 + 52) - 2, i.e.

-4A
M 12 + Y2 812P2 - (4-7) 2a_2

Equation (4.7) integrates to

Q = qO + q, 5- 412P2 Y
2
- 2A

M 12 52 _

A m ,-4 (4-8)
h2a2 3 jT2   Y

The derived metric can be brought into a more transparent form by performing
the following identifications:

exp(-2ax) = Aoi, (4.9)
4a212h2P exp(

2

4ax)
. P, (4.10)

M AO
h2a2

Q Q,
M

Ao
(d-T + ndu) do', (4.12)

2aj2h2
M

da = dt'. (4.13)

Dropping primes and tildes, we can write the NUT-Carter B(+) metric as

9 = (12 + Y2)
dx2

+ Pd02 +
12 + Y2

dy2
_

12
Q

2 [dt + 21x do]2 , (4.14)
P Q +Y

where

2P = PO + P1 X - E X , (4.15)

Q = e
2
+ g

2
_ E12 + A14 - 2m y + (c - 2A12 ) Y2 _

A
Y
4 (4.16)

3

The NUT-Carter B(+) solution is endowed with the mass parameter M, the
NUT parameter 1, the electric charge e, the magnetic charge g, and the cosmo-

logical constant A. The parameter E = 1, 0, -1 determines the geometry of the

92-metric sector, i.e. 92 dX21p + Pd02. Moreover, the only non-vanishing
Weyl coefficient reads:

M - i (Ej IA13) e2 + *g2
T12

(Y jj)2
L

Y -
3

Y
2 + 12

(4.17)

4.2 Anti-NUT-Carter B(-) class

For completeness, we present the counterpart of the NUT-Carter B(+) solutions,
which can be easily derived by following a similar integration procedure as the
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one presented above. Letting M mo, N -+ exp (2y), H --+ exp (y) cos x, and

introducing the transformation x arctan(x/1), y -+ - (1/2) In y, P -+ (12 +
X2) -'P, and Q -4 (21y)-2Q, it is possible to write the corresponding metric in

the form

9 =
P

(do, + 21y dT) 2
+ dx2+ j

dy2

Q d-r2 (4.18)
P Q

with

6 = 12 + X
2 (4.19)

P - -e
2
_ 92 _ E12 + A14 + 2nx + (,E - 2A12) X2 _

A
X
4 (4.20)

3
2Q - 1 - 'E Y (4.21)

g
d-r 1 - zX

(4.22)W d (e +
.

+ - y dr
+ zx 1 + ix

since this solution is not asymptotically flat, a black hole interpretation is not

appropriate. For this metric, the Weyl coefficient reads

1 n - i Ej A13 e2 + *g2
T/2 3 (4.23)

(X + jj)2
L

X + il X
2 + 12

1

*

4.3 Plebanski class of metrics

The most general family of solutions of the class under study arises from the

assumptions Mx :A 0, Nu  4 0. In this case the principal null congruencies of the

Weyl tensor are (geodetic, shear-free) diverging and with twist. The starting
point for the integration of the field equations is the D(MN) equation (2.15):

D(MN) := (M - N) (M,, - NyV) - Mx2 - N2
= 0 (4.24)Y

Applying 9xay to D(MN), one obtains

NyMxxx + MxNyyy - 0, (4.25)

which separates into

MXXX + aMX - 0, Mxx + aM - 20, (4.26)
Nyyy - aNy - 0, Nyy + aN = 2-y. (4.27)

For a further integration, one has to consider the various branches, i.e. a = 0,
a - k2, and a -- -k2

,
where k is an arbitrary constant.

For a - 0, the Plebanski metric is obtained in the standard x, y coordi-

nates. For a = k2
,
the metric is given in terms of trigonometric and hyperbolic

functions which allow, for the electromagnetic cases studied, coordinate trans-

formations yielding the standard Plebanski form. If a rigidly rotating perfect
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fluid is present, then the resulting metric is a charged version of the Wahlquist
perfect fluid solution [17]. For a = -k2, again we are facing a trigonometric-
hyperbolic representation of the Plebanski metric. For perfect fluid one arrives

at a class of metrics presented in [5]. Therefore, the only case one has to study
in the electrovacuum case with cosmological constant A is the case with a = 0.

2 2The integrals M = mo + m1 x + 3 x and N = no + n1 y + ^ y , fulfilling
equation (4.24), are

M - ao +
1

(n2+ M2) + rn,X + OX2 (4.28)
8,3 1 1

N = ao -

I
(n2+ M2) + nly -,3y2 (4.29)

80 1 1

Performing shift and scale transformations, one can bring M and N into the

form

M = Po +'3x2
_4 M X2, (4-30)

N = po - /3y2 -- N _Y2. (4.31)

Then the equations (2.16)-(2.19) reduce to

Hxx = Hyy = 0, xHx - yHy = 0, (X2 + Y2 )Hxy - xHy - yHx = 0. (4.32)

They have the following general solution:

H = v + pxy -4 H = 1 + pxy. (4.33)

The electromagnetic field equation (2.12) reads

1 1 dy ydx
dln k2- (S + i*B) - 2i

x
0 (4.34)

x2 + Y2 x2 + y2

Thus

+ iY
d In

H2
(S + i *B) - dIn

X
01 (4.35)

x - iY
or

E+i*B=
H

(X + iy)2 (e + i *g), A = X2 + Y2, (4.36),A2

from which it is straightforward to obtain

H
(X2 _ Y2)

H
[*g(X2

'A [e - 2xy*g] ,
*B

'A
_ Y2) + 2xyel (4.37)

The quantity S2 + *L32
, entering in the S-equation (2.20) acquires, the simple

form

e2 + *z32 =
H

(e2 + *g2) (4-38),A2



10. BHs as Exact Solutions of the Einstein-Maxwell Equations 219

The R-equation (2.21) is now given explicitely by

0 = (I + PX )2 [pV XX + QYY] - 6p (1 + pxV) [VPx + xQy] (4.39)
+ 121-L2 [y2p + X2Q] + 4A(X2 + Y2).

Applying axOxigyay to (4-40), one gets

,9X ax [X2p- 6xPx + 12P] +,gyay [Y2QYY - 6yQy + 12Q] = 0.
 X (4.40)

Therefore (4.40) splits into

2p VX2X xx-6xPx+12P=2 + 6a,x + 12aO, (4.41)
Y2QYY - 6yQj, + 12Q = -2VY2 + 6,31y + 12,30, (4.42)

which are inhomogeneous Euler equations and integrate as follows:

2 3 4P=ao+alx+vx +P3X +P4X (4.43)
Q = 00 + Oly _ VY2 + q3 Y3 + q4 Y4 (4.44)

Substituting the functions P in (4.43) and Q in (4.44) as well as their derivatives

into the S- and R-equations (2.20) and (2.21) respectively, one arrives at the

structural functions

e2 + *g2 2 3P = 7 + ax + vx + I-t,3x
e2 + *g22

+ I-L 7+
4

X (4.45)
2 23

Q = 7 +
e2 + *g2

+ Oy _ VY2 + paY3 -

A
+ P2 'Y -

e2 + *g2 Y4, (4.46)
2 3 2

which, together with

2 2 2 2H = I+ AXY, M= X N= -Y ' A=x +Y (4.47)

are the building blocks of the Plebanski metric

g =
1
2

Adx2 +
P

07- - Y2da)2 + 'A
dy2- 9 (dT + X2 da)

2

, (4.48)
H P Q '6

with

w = d [-(ey + *gx)dr - xy(ex - *gy)do,]

+
I

[(ex - *gy)d-r - xy(ey + *gx)do-] -

(4.49)
It is characterized by the Weyl component

2T/2
+ AXY ia) + 2 (e2 + *92) PXY (4-50)
Y + ix Y - ZX

We suggested to name (4-48) the Plebanski metric since it contains as particular
cases the Plebanski-Demianski solution [13] and the Plebanski-Carter [A] metric

[3, 14].
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4.4 Plebanski-Demianski metric

For /-i = -1, - -+ -y - A/6 - *g2/2 + e2/2, a -+ 21, v = -E, -2m, x -+ p,

y -+ q, o, -- -a, the structural functions acquire now the form

P- -y-
A

92) + 21p - EP2 + 2MP3 _ -Y +
A
+ e

2 P4 (4-51)
6 6

A
2 2 3 A

* 2 4Q= 7-
6
+ e - 2mq +,Eq - 21q 7+

6
- 9 q (4-52)

2 2H = I - pq, zA = p + q (4-53)

and the metric (4.48) reduces to the well known Plebanski-Demianski form:

g=
I
-
-Ad 2

+
P

- + q2da) 2
+

'A
2 Q (d-r do,)

2
(4.54)2 P _ (d7 dq + P2V _P 'A Q 16

The only non-vanishing Weyl coefficient reads

T12
xy

(m + il) + (e2 + *g2)
1 + XY

(4-55)
Y + zx Y - ix.,

4.5 The Plebanski-Carter[A] metric

For p - 0, 7 -+ 7 _ *q2 /2 + e2/2, a = 21, v = -E, -2m, x p, y -+ q,
a -4 -o-, the structural functions acquire the form

2 2
A

4P - 7 - *_q + 21p -,Ep
3
P (4.56)

2 2
A 4Q=7+e -2mq+,Eq
3
q (4-57)

2 2
p + q (4.58)

and the metric (4.48) reduces to the Plebanski-Carter[A] form

g =
'A

dP2 +
P

(d-r + q2do,) 2
+
A
dq2+

Q (d-r _ P2 do-)
2

(4.59)P A Q

The corresponding Weyl component reads

(m + ZI) (q - ip) - e
2 *q2

T12
(q + jP)3 (q - ip)

(4.60)

4.6 The Kerr-Newman metric

By putting in the Plebanski-Carter [A] metric E = 1, A = 0, 1 0, 0,
and -y = a

2
, as well as perfoming the following coordinate transformations p =
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-a COS 0, q = r, -r = t + ao, and o, = (1 /a) 0, and defining, as it is conventionally
accepted,

P - a
2 sin20, A Q = a

2
+ e2- 2mr + r2, Z:= P2 + q

2
= r2+ a

2 COS2 0,
(4-61)

one arrives at the Kerr-Newman metric in Boyer-Lindquist [2] coordinates

9-- (, A - a2sin2 0) dt2 +
2
a sin2o (r2 + a

2
-  A) dtdo

+ sin20 [(r2+ a2)2 - a2'A sin2 0] d02 + Zd02 +
Z

dr2. (4.62)
Z ZA

The Weyl component T12 is now given by

T/2 - -

m (r + iacosO) - e
2

(4-63)
(r - ia COS 0) 3(r + ia COS 0)

This solution corresponds to the standard black hole solution with charge and

angular momentum [6, 10, 11].

5 Discussion

At the beginning of the golden age, black holes were thought to be just what

their name suggests, i.e. holes in space, down which things can fall, out of which

nothing can emerge. Later, the picture changed. Black holes were regarded not

as mere quiescent holes in spacetime but rather as dynamical objects. A black

hole should be able to rotate, and as it rotates it should create a tornado-like

swirling motion in the curved spacetime around itself. The greatest surprise to

emerge from the golden age was the result of general relativity that all proper-
ties of a black hole are precisely predictable from just three parameters, i.e. its

mass, its angular momentum, and its electric charge. From those three parame-
ters one should be able to compute, for instance, the shape of the hole horizon,
the strength of its gravitational pull, and the details of the swirl of the space-
time around it, among other properties. Penrose introduced global concepts and

showed how they could be used to establish results about spacetime singularities
that did not depend on any exact symmetry or details of the matter content of

the universe. Bekenstein introduced the black holes thermodynamics, which cul-

minate in the area theorem. Nowadays, it is the issue of the quantum mechanics

of the black holes which is under intensive investigation [16].
We have derived the full class of solutions of the Einstein-Maxwell equations

with cosmological constant for the Petrov type D. These solutions are endowed

with several free parameters and they contain a broad spectrum of features, for

instance spherical symmetry, flat symmetry, or even hyperbolic symmetry, but

also asymptotical or non-asymptotical flatness. Moreover, the electromagnetic
field can be homogeneous, inhomogeneous, axially distributed, or it decreases

asymptotically.
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However, if we take into account the uniqueness theorems of black holes,
one has to conclude that from the broad spectrum of type D solutions only
the proper Reissner-Nordstr6m family (endowed with mass and charge) and the

Kerr-Newman family (characterized by mass, charge, and angular momentum)
are solutions which can be interpreted as black holes, i.e. as an exterior field of

a collapsing star surrounded by an event horizon.
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Solutions I m I n I e I *g I a I b  5-

Plebafiski-Demiafiski XI X X XI X X X X X

Carter A X X X I X X X X X

Plebafiski X X_ X XI X X XI X
Kerr-Newman X _X 1 XI X X

NUT-Carter B(+)
_

X
_

X X X I X

Carter B(+) X. X X. X X

anti NUT-Carter B(-) X X X X. X 1 XI IX
Carter B(-) X X X I X X X

C-Levi-Civita X .X X X1 X X

Reissner-Nordstr6m X 1 X X1 X

anti Reissner-Nordstr6m X X X X

Schwarzschild X I X1 1 I
Bertotti-Robin ons X X

_ _

de Sitter X

Table 1 Stationary axisymmeric type D electrovacuum solutions: Classification accord-

ing to the 7 parameters m (mass), n (NUT-parameter), e (electric charge), *g (magnetic
charge), a (angular momentum), b (acceleration), A (cosmological constant), and the

two quantities  o_ (twist), W (expansion).
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On the Construction of Time-Symmetric Black Hole

Initial Data

Domenico Giulini

Institute for Theoretical Physics, University of Ziirich, Winterthurer Str. 190,
CH-8057 Zfirich, Switzerland

Abstract. We review the 3+1 - split which serves to put Einstein's equations into the

form of a dynamical system with constraints. We then discuss the constraint equations
under the simplifying assumption of time-symmetry. Multi-Black-Hole data are pre-
sented and more explicitly described in the case of two holes. The effect of different

topologies is emphasized.

Notation. Space-time is a manifold M with Lorentzian metric g of signature
(-, +, +, +) -

Greek indices are c 10, 1, 2, 31 and latin indices are E 11, 2, 31.
Indices from the beginning of the alphabet, like a,0....

and a, b, - - - ,
refer to

orthonormal frames and indices from the middle, like A, /,t .... and l,m,... to co-

ordinate frames. The symbol o denotes the composition of maps. The relation:=

(=:) defines the left (right) hand side. The torsion and curvature tensors for the
connection V are defined by T(X, Y) :- VxY-VyX- [X, Y] and R(X, Y)Z:-
VxVyZ - VyVxZ - V[X,ylZ respectively. The covariant components of the
Riemann and Ricci tensors are defined by R,O,,j := g(e, R(e-y, e6)e,8) and

R,1Y := g,86R,,8.y6 respectively.

1 The 3+1 -Split

In this article we discuss the vacuum Einstein equations

G ` R" -

.1  "R - 0,29

which form a system of ten quasi-linear second order differential equations for
the ten functions g,,. However, the four equations G1,0 = 0 do not involve the
second time derivatives and hence constrain the set of initial data. To see this,
recall that the twice contracted second Bianchi identity gives V,,G'" = 0, or

expanded

,%Go' = -09kGkv - Ft' G\v -Fv Gt"\. (2)pA /IA

Since the right hand side contains at most second time derivatives the assertion
follows. The ten Einstein equations therefore split into four constraints and six

evolution equations Gik = 0. That four equations constrain the initial data rather
than guiding the evolution results in four dynamically undetermined functions

among the ten gmv. The task is to parameterize the g,,, in such a way that four

F.W. Hehl, C. Kiefer, R.J.K. Metzler (Eds.): LNP 514, pp. 224 - 243, 1998
© Springer-Verlag Berlin Heidelberg 1998
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dynamically undetermined functions can be cleanly separated from the other six.

How this can be done via the 3+1 split is explained below. The four dynamically
undetermined quantities will be the famous lapse (one function) and shift (three
functions). It follows directly from (2) that the constraints will be preserved
under this evolution.

The splitting of the Einstein equations will be formulated in a geometric fash-

ion. We initially think of (M, g) as given and satisfying the Einstein equations.
Then we write down the evolution law for the intrinsic and extrinsic geometry of

a spacelike 3-manifold Z as it moves through M. Together with the constraints

they are equivalent to all Einstein equations. Finally this procedure is turned up-

side down by taking the evolution equations for Z's geometry as starting point.
Only after their integration can we construct the ambient space-time.

1.1 3+1 Split Geometry

The topology of space-time (or the portion thereof) which we want to decompose
into space and time must be a product M Z x R. We foliate M by a one-

parameter family of embeddings et : Z - M, t G R. For fixed t the image of

et in M is called Zt, or the t'th leaf of the foliation. All leaves are assumed

spacelike. Hence there is a normalized timelike vector field, n, normal to all

leaves. We choose one of the two possible orientations and thereby introduce the

notions of future and past: A timelike vector X is future pointing iff g(X, n) < 0

(recall signature convention). The tangent-bundle T(M) can now be split into

the orthogonal sum of the subbundle of spacelike vectors, S(M), and the normal

bundle, N(M). The associated projection maps are given by

S : T(M) -+ S(M), X  -+ X + n g (n, X), (3)
N:T(M)-+N(M), X -4-ng(n,X), (4)

which can be naturally continued to the cotangent bundle by setting S*(W) :=

w o S and then factorwise on tensor products and linearly on the whole tensor-

bundle. Thus we obtain a split of the whole tensor bundle, where from now on

the projection maps are simply called S and N for all tensors. Tensors in the

image of S are called spatial. It is easy to verify that

h := Sg = g + n 0 n , (5)

where nb := g(n, .). Note that the restriction ht of h to T(ft) is just the induced
Riemannian metric on Zt. Identifying for the moment Z and Zt via et this

leads to ht = e*g (Exercise). For what follows it is however crucial to regardt

spatial tensors as tensors over M and not over Z. Otherwise covariant (or Lie-)
derivatives in directions off Z would not make sense.

If X, Y are any spatial vector fields we can write

VxY = SVxY + NVXY = DxY + n K(X, Y), (6)
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where we defined the spatial covariant derivative, D, and the extrinsic curvature,
K, by

Dx:= S o VX, (7)
K(X, Y) :- -g(VXY, n) = -g(VyX, n) = g(Vxn, Y). (8)

The second equality in (8) - and hence the symmetry of K - follows from the

vanishing torsion of V and the fact that [X, Y] is spatial. It is easy to prove that

K is indeed a tensor and that D defines a connection on the tangent bundle of

each leaf Zt. Extension via the Leibnitz rule leads to a unique connection on the

bundle of spatial tensors, which can be directly defined by (7) with the extended

meaning of S described above. In fact it is just the Levi-Civita connection com-

patible with the metric h. To see this, we compute DXh = SVx (g + n 0 n ) = 0,
since VXg = 0 = Sn , so that D is compatible with h. Vanishing torsion is

also immediate: DxY - DyX - [X,Y] = S(VXY - VyX - [X,Y]) = 0, by
[X, Y] - S[X, Y] and the vanishing torsion of V.

Let Jeo,e1,e2,e3J be an orthonormal frame adapted to the foliation, i.e.

eo = n, and leo, el, e2, e31 its dual. Then from (5) with n = eo we have

3

0 0 0 0 a a
g= -e Oe +h= -e Oe +E e Oe (9)

a=1

The family of embeddings t   et defines a vector field, 9/o9t =: (9t, which is

easily characterized by its action on any smooth function P

,at f : = I f o et. (10)
dt t=o

This vector field can be decomposed into normal and tangential components

c9t = an +,3 = aeo + Oa ea, (11)

with uniquely defined function a and spatial vector field 0. They are called the

lapse (function) and shift (vector field) respectively.
Let now Jx"J be an adapted local coordinate system on M so that xO = t

and hence spatial fields (9k := (9119Xk. The flow lines of at are then the lines
of constant spatial coordinates xk. Hence (a,O) are interpreted as normal and

tangential components of the 4-velocity - measured in units of t - with which

the points of constant spatial coordinates move. To express the metric g in terms

of these coordinates we use an obvious matrix notation and write

j9t (a Oa eo (12)19k  O Aa
ea) k) ((

(eO ea) (dt dXk  (a Oa
(13)1  O Aak)

Introducing (13) into (9) yields the 3+1 split form of the metric 9:

g = _C,2 dt 0 dt + hik (dx' +,3'dt) 0 (dXk +,3k dt), (14)
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where hik = h (i9i 1 090 = E,, AqAa and 31Aq = 3a. For the measure 4-form one
I k

-

I

easily obtains eo A el A e2 A e3 - Cc Vd-et I hik Id4x.
In the ambient space-time the notion of time-derivative of spatial tensors is

introduced via the Lie-derivative along the time flow generated by Ot. But in

order to render this an operation within the space of spatial tensor fields we

must include a spatial projection. Using (11) we define the "doting" by

h := SLg, h = aL,h + SLeh, (15)

where we also used L,,h = aLnh and that L,h is already spatial. This is true for

any covariant spatial tensor and any smooth function a. To prove this, we first

remark that by Leibnitz' rule it suffices to prove it for a general spatial 1-form W.

The first assertion now follows from L,,,w = (ianod+doian)W = aindw = aLnW-
The second statement follows from the general formula in o L, = i[n,v] + Lv 0 in)
showing that for v = n the left hand side annihilates any spatial tensor field.

This identity also shows why we need the projector in the second expression
on the right hand side of (15), since for v = 3 it shows that we would need

[n,,3] oc n for L,3h to be spatial. But this is generally false, as one easily shows

that [n, Ok 19k I oc n  , j9t pk) = 0.

We proceed by showing that Lnh is just twice the extrinsic curvature:

K = !Lnh. (16)2

To prove this relation, we take any spatial vector fields X,Y and compute:
Lnh(X, Y) = Vn(h(X, Y))-h([n, X], Y)-h(X, [n, Y]) = h(Vxn, Y)+h(X, Vyn)
= 2K(X, Y), where we used the metricity of V, (Vn h) (X, Y) = (Vng) (X, Y)
= 0, and its vanishing torsion. Hence we arrive at

K =

2a (h - SLOh). (17)

The projected Lie-derivative can be expressed in terms of the spatial covariant

derivative in the usual way. In components with respect to a spatial coordinate
frame this reads (SL)3h)ik = DiOk + Dk)3i-

1.2 Constraints and Equations of Motion

Using the splitting formula (6) for the connection V in terms of D and K we

can derive the so-called Gauss-Codazzi and Codazzi-Mainardi equations by a

straightforward manipulation. In components with respect to feJ and with
RP) denoting the curvature of D, they read respectively:

Rabcd = R(3)abcd + KacKbd - KadKbc7 (18)
Roabc = DcKab - DbKac- (19)

From here it is easy to write down the constraints by noting that in orthonormal

frames one has Ea,b Rabab = R + 2Roo = 2Goo, i.e. the 00 component of the
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Einstein tensor just depends on the spatial components of V's curvature. In

fact, it is the sum of the spatial sectional curvatures of V. Further, GOb ==

ROb = E,, Roaba. Hence we have the constraints, now written in components
with respect a coordinate frame,

G,,,n"n' = !(R(3) - KikK'k + (Ki) 2) = 0, (20)2 j

G,,,in ' = Dk (Kik - hikKjl) = 0. (21)

To obtain the dynamical equations one starts again from the defining equa-

tion of the curvature and manipulates the expression for Roa0b- Observing that

VnWea, Ve, n)) = LnKab one arrives at

ROaOb - -LnKab + Ka,K' + aaab + Daabi (22)b

where a := V,n. Note also that a = Lnn (Exercise: Prove it). Despite appear-

ance, the last term in (22) is also symmetric.' Now, Rab = -ROaOb + E, Rcacb7
so that with (18) we have

Rab = R(3)ab + LnKab + KabK' - 2KacKc - aaab - D,,ab- (23)
C b

This is almost the evolution equation we wish to obtain. As in (15) we have

k = aLnK + SLOK, and since we want to write down the final equation in

a coordinate basis, we can simplify the terms involving a by noting that ai

(Lnnb) (0i) = n
 Qo9i, (,9t - 0) o9ia/a. Hence2

a(2KijKki - K + Rik - R(3)
ik + DiDkCfikik ikKj* ik) + L,3K (24)

3

where in the vacuum case we consider here one sets Rik = 0. Note that in a coor-

dinate frame dotting just means taking the partial derivative of the components,
i.e., La, hij - i9hij /o9t.

The dynamical formulation is now complete. The constraints are given by eqs.

(20) (2 1) and the six evolution equations of second order are written as twelve

equations of first order, given by (15) and (24). The six dynamical components of

g are the hij, whereas there are no evolution equations for the four functions a, 0.
The initial value problem thus takes the following form: 1.) choose a 3-manifold
Z with local coordinates  x'J, 2.) find a Riemannian metric hij and a symmetric

This is due to n being hypersurface-orthogonal. To see this, we first note the identity
(Ln --in od)dn An = da'An' (Exercise: Prove it). Now, hypersurface-orthogonality2

of n  -* dn A n = 0 = , da' A n' = 0 t* Sda = 0  -* D[,,,,atl = 0.
2 Be aware that some authors define the extrinsic curvature with opposite sign, for

example E. Seidel in his lecture. Hence the discrepancy between our eqns. (17)(24)
with his (5)(6) respectively. In our convention, which agrees with Hawking & Ellis, a

positive Ki' implies volume expansion under deformations in normal direction. Also

note that "dotting" does not commute with index raising. Hence notations like k'i
are ambiguous. For example, denoting the index raising operation by a superscript
0, (16) immediately gives (Ln(KO) - (LnK)0)'k = -4KJKik.
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covariant tensor field Kij on Z which satisfy (20) (21), 3.) choose any convenient

functions a(t, Xk),)3i (t, Xk), 4.) evolve hij and Kij via (15) (24) by using the

choices made in the previous step, 5.) take the solution curve hij (t, Xk) and the

functions from 3.) to construct the space-time metric according to (14), where
x' = t. The g so constructed solves Einstein's equations. An important theorem

guarantees that for suitably specified data a maximal evolution (M, g) exists

which is unique up to diffeornorphisms (Choquet-Bruhat and Geroch 1969). See
also Choquet-Bruhat and York (1980) for a review and further references.

Regarding step 2.), we remark that all topologies Z allow some initial data,
i.e., there are no topological obstructions to (20)(21) (Witt 1986). This might
change if geometrically spectal data are sought (see below). To illustrate step
3.), we mention the so-called maximal slicing condition on a. To derive it, we

compute L,(hijKij) = -2KijKij + hijL,,Kij = -Roo - K'jKij +,Aa/a, where
,A = DiDi and where we used Roo - Ea Roaoa and (22) to replace L,K. Hence

La, (Ki') = (,A - K'j Kij - Roo)a + L,3 (Ki'), (25)

where we left in Roo for generality. Note that the strong energy condition implies
Roo > 0 through the Einstein equations. The hypersurface Z C M is called
maximal if the trace of its extrinsic curvature - the so-called mean curvature -

is zero, i.e., Kii = 0. This is equivalent to Z being a stationary point of all
the 3-dimensional volume functionals for domains in Z and fixed boundaries

.

3

(Exercise: Prove this using (16).) Now, given a maximal slice Z C M, (25) gives
the following simple condition on a if the evolution is to preserve maximality:
Oa = 0 with elliptic operator 0 - A - K'3Kij - Roo. (Exercise: Assuming the

strong energy condition, prove that any smooth function a in the kernel of 0
cannot have a positive local maximum or negative local minimum on Z.) In the
vacuum case one can use (20) to write 0 = A - R(3)

, i.e., purely in terms of the
intrinsic geometry of Z, where clearly R(3) > 0.

The maximal slicing condition plays an important r6le in numerical evolution

schemes, since - by definition - the evolving maximal slices Zt C M approach
slowest the regions of strongest spatial compression. In this sense they have
the tendency to avoid singularities. For further information see section 2.3 of
E. Seidel's lecture. Finally we note that since not all topologies Z allow for
metrics with R(3) > 0, there exist topological obstructions to maximal initial
data sets (Witt 1986).

2 Time-Symmetric Initial Data

Suppose a hypersurface Z C M has vanishing extrinsic curvature, K = 0. From

(6) we then have VXY = DxY for all vector fields X, Y tangent to Z. In

The standard terminology is that such stationary points are called "maximal" if the
ambient geometry is Lorentzian and "minimal" if it is Riemannian, irrespectively of
whether they really are true maxima or minima respectively. True extrema are called
stable maximal (minimal) surfaces.
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particular, if -y : I -+ Z is a curve with tangent vector field 7' over -y, then

V-y,-y' = D,,,-y' and - is a geodesic in Z iff it is a geodesic in M. Submanifolds
for which this is true are called totally geodesic. This is a stronger condition
than maximality. In general, constant mean curvature data play an important
r6le in the solution theory for the constraints (see York 1973,6Murchadha and
York 1974). Here we shall vastly shortcut the general procedure by imposing
the condition that Z be totally geodesic. One can then show that the maximal

development, M, from these data allows an isometry fixing Z pointwise and

exchanging the two components of M - Z. Hence such data are called time

symmetric. For such cases the constraints reduce to the simple condition that

(Z, h) has vanishing Ricci-scalar:

R(3) (h) = 0, (26)

where for later convenience we explicitly indicated the metric as argument of
RO). A general idea for solving (26) is to prescribe h up to an overall conformal
factor 4i, and let (26) determine the latter. So setting h = 40h', with fourth

power just for convenience, we have by the conformal transformation law for the
Ricci-scalar

R(3) (4i4 h') = -84i-5(1Ah1 - -IR(3) (h'))4i =: -84i-5 ChOP = 0, (27)8

where Ahl is the Laplacian for the metric h'. We are interested in C2 Solutions

satisfying P > 0 and where (Z, h) has no boundaries at finite distances, i.e.
Z should be topologically complete in the metric topology defined by the dis-
tance function induced by h. The last condition is equivalent to (Z, h) being
geodesically complete (theorem of Hopf-Rinow-DeRahm, see e.g. Spivak 1979).
In addition, we shall only be interested in manifolds whose ends are asymp-
totically flat. Allowing the manifold Z to have more ends or to be otherwise

topologically more complicated allows for a greater variety of solutions. Note
that to each of n asymptotically flat ends there corresponds an ADM-mass of
which n - 1 are independent (see below).

Brill Waves. One may ask whether simple asymptotically flat solutions to

Chl 4' = 0 exist on Z = R3. There are no (regular!) black-hole solutions with
this simple topology, but there are solutions representing localized gravitational
waves of non-zero total ADM energy (Araki 1959). In the axisymmetric case they
were investigated in detail by Brill (1959). Solutions of this kind are collectively
called "Brill waves". One takes (from now on in the usual shorthand suppressing
the 0)

h' = exp(A q(z, p)) (dz2+ dp2) + P2d 02, (28)

where the profile-function q must for r -* oo fall off like r- 2 and like r-3 in its
first derivatives in order for h to turn out asymptotically flat. q characterizes the

geometry in the meridial cross section (zp-plane) of the toroidal gravitational



11. Time-Symmetric Initial Data 231

wave. Regularity on the axis also requires q and 0pq to vanish for p = 0. The

parameter A E R+ is sometimes introduced to independently parameterize the

overall amplitude. Equation (26) for -P(z, p) takes the particularly simple form

(, Af + .1 A,,A (2 )q)  P = 0, (29)4

where .6f is the flat Laplacian and A(2) = 92 /,9Z2 +,92 /,gp2 .
Given q, everywhere

positive solutions for  P exist provided A is below some critical value depending
on the choice q (Araki 1959). To see uniqueness, assume the existence of two

solutions  Pj and 4 2 and set hi =  Ojh', i = 1,2. Then 4 3 := 'fil/ k is also

c2, positive and tends to 1 at infinity. But (27) immediately implies Ch2!P3
1 (P53 R(3) (hi) = 0, and since also R(3) (h2) = 0 this is equivalent to '6h2 P3 = 0-

Hence (P3 = I due to the fact that the only bounded harmonic functions are the

constant ones.

3 Black-Hole Data

A substantial variety of time-symmetric black-hole data can already be obtained

by solving (27) when h' is flat, i.e., where the 3-metric, h, on the spatial slice

at the moment of time-symmetry is conformally flat. One can obtain manifolds
with any number of asymptotically flat ends, and then reduce this number by a

process which is best described by calling it "plumbing" (see below). We shall
devote the rest of this paper to the description of such solutions and techniques.
Note that for flat h' we are left with the simple harmonic equation involving
only the flat Laplacian:

,Af 4i = 0. (30)

In general it is difficult to infer from given initial data whether they cor-

respond to a spacetime with black holes, i.e. with event horizons. However, in

the examples to follow it is easy to see that that there will be apparent hori-

zons, since for time symmetric data apparent horizons correspond precisely to

minimal surfaces S C _V 4. Proposition 9.2.8 of Hawking and Ellis (1973) now

implies the existence of an event horizon whose intersection with Z is on, or

outside, the outermost apparent horizon for any regular predictable spacetime
that develops from data satisfying the strong energy condition. Concerning the

topology of apparent horizons we remark the following: Using the formula for
the second variation of the area functional and the theorem of GauB -Bonnet,

4The condition on S being an apparent horizon is that the congruences of outgoing
null rays from S must have zero divergence. Analytically this translates into tr2 (r.) =
(tr(K) - K(v, v) where n, v are respectively the extrinsic curvature and normal of
S in Z. The upper sign is valid for past apparent horizons, and the lower one for

future apparent horizons. tr2 is the 2-dimensional trace using the induced metric of
S and tr the 3-dimensional trace using h. For time-symmetric initial data (K = 0)
this condition states that K is traceless and hence S minimal in Z.
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one shows that for ambient metrics with non-negative Ricci scalar any connected

component of an orientable stable minimal surface of finite volume must be a

topological 2-sphere (Gibbons 1972). Allowing also for non-orientable apparent
horizons, one deduces from this that for metrics h of Z with R(3) (h) > 0 a

connected component of an apparent horizon is either S2 or Rp2' the latter

being the (non-orientable) 2-dimensional real projective space. If Z is orientable
RP' C Z is one-sided, as in the example below.

3.1 Schwarzschild Data

We start by noting that the most general non-trivial solution of (30) on Z
R - 101 is given by (P(Z) = 1 + with r = 11ill and m G R+. We cannot have

2r

any higher multipole moments because then !P necessarily has zeros on Z. Just

removing iV 1 (0) from Z does not work since these points are at finite distance
so that the resulting space would not be (geodesically) complete. This is also
the reason why m must be positive. Hence we obtain for, the metric h in polar
coordinates

h +
rn )

4

(dr2 + r2df22), (31)
2r

with df?2 == do2+ sin20 d O2. Now, it is easy to verify that the following two

diffeomorphisms, I and i, of Z are involutive (i.e., square to the identity) isome-
tries:

M2
I(r, 0,  0) .-4r '0,  O 1 (32)

M2
I(r, 0, W) .-

-, 7r - 0,  O + 7r . (33)
4r

The map I is called an inversion on the sphere r = m/2, whereas I is that
inversion plus an additional antipodal map on the spheres of constant r. We shall
sometimes refer to them as inversions of the first and second kind respectively. i
has no fixed points while I fixes each point of the sphere S 9 1 r =

' I (which,2

as set, is also left invariant by i). As fixed point set of an isometry S must be

totally geodesic5, hence minimal and therefore an apparent horizon. Its surface
area is A = 167rm2, and it separates the two isometric regions r > m/2 and
r < m/2. The metric (31) corresponds to the spatial part of the Schwarzschild
metric of mass m in isotropic coordinates, which cover both asymptotically flat

regions (I and III) on the Kruskal manifold. Using this isotropic form, one can

read off a - (I - m/2r)/(l + m/2r), 0 = 0 and verify that with this choice the
static form of (24) with K = 0 is satisfied (Exercise).

Proof: Consider the unique geodesic -y starting on and tangentially to S. it cannot

leave S since if it would, its image under I would be a different geodesic with the

same initial conditions, which contradicts the uniqueness theorem for ODE's.
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a

r-O

Fig. I The Schwarzschild Throat

The manifold Z has two isometric ends and we can get rid of one by suitably
identifications. For this we take the quotient  of Z with respect to the free

action of 1. The freeness guarantees that the quotient will be a manifold, and,
by being an isometry, the metric descends to a smooth metric on the quotient.
can be pictured by cutting Z along S, throwing away one piece, and identifying
opposite points on the inner boundary S on the retained piece. Hence topolog-
ically ' is the real projective space, Rp3, minus a point. The projection of S
into ' is a totally geodesic, one-sided (i.e. non-orientable) surface diffeomorphic
to Rp2. _! is orientable, smooth, complete and with one end which is isometric

to, and hence has the same ADM mass as, either end in Z. This demonstrates
how the introduction of more ends or other topological features makes it possible
to define non-trivial black-hole data. One may also combine Brill waves with a

black hole to model a single distorted black hole. This is further discussed in

section 2.2 of E. Seidel's lecture.

3Multi-Schwarzschild Data. Taking Z - R 6,1 the generalization
of (31) is easily obtained with n poles of strengths ai E R+ at "positions" 6i:

n

0(i) = I + 1: 'i
, (34)

i=1
ri

where ri := Ili - 6ill. For each i we can introduce inverted polar coordinates

r' = a2/ri to probe the region ri --* 0 by letting r' -+ oo. Doing this shows

that the metric is asymptotically of the form (31) with certain mass parameters
rn = mi given below. The same is true for the region r -+ oo with mass M.

Hence one obtains n + I asymptotically flat ends. The internal masses and the

overall mass are given by (rji := llFj -6ill)

mi = 2ai(l + Xi), where Xi := E a,.
,

and M = 2 ai. (35)
rj.,3.:Ai
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Fig. 2 Multi-Schwarzschild

In terms of the parameters ai, rij the binding energy takes the simple form

n n n

'A mi = -2 aiXi - -2 aiaj
< 0. (36)M:= M - EE I

=1 j., rij

Note that there are as many independent masses as there are generators of the

second homology group of Z. These generators may be represented by stable

minimal surfaces associated to each internal end. Their surfaces areas clearly
satisfy Ai > 161r(2ai )2, since the right hand side represents the minimal area

in the strictly smaller metric (31) for just one hole with parameter m = 2ai.
But there is also an upper bound for the area, given by the recently proven
Riemannian Penrose inequality' (Huisken and Ilmanen 1997), which in our con-

text reads A < 167r(2ai)2(1 + X,)2 . Assuming the existence of an event horizon

(see above), the Area Theorem (see my other contribution to this volume) im-

plies that the area of the hole in the i'th end cannot evolve below Ai, which,
using the first inequality above, implies in particular that the energy which is

bound in the final hole is greater than 2ai = mi/(1 + Xi). The difference of the

(conserved) ADM mass mi to the mass of the final hole is therefore bounded

above by miXi/(1 + Xi). In other words, the fraction of energy being radiated is

less than Xi/(l + Xi). This still allows for total conversion into radiation if one

chooses Xi -+ oo.

It would be of course more interesting to express (36) in terms of physical
variables, like the individual masses mi, and more geometrically defined distance

functions than rij, like e.g. the proper geodesic distance of the minimal surfaces

in the i'th and j'th throat. Note that for small mass-to-separation ratios we

The proof of [18] applies to all asymptotically flat Riemannian 3-Manifolds whose

Ricci scalar satisfies R > 0. They prove that the area A of the outermost stable

minimal surface bounding an end and the ADM mass m of that end satisfy A <

167rm2. It implies the positive mass theorem for data with R > 0.
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may in a first approximation replace ai by 1rni and rij by the geodesic distance
2

of the i'th and j'th apparent horizons and get the familiar Newtonian formula.

But there will be corrections the precise form of which depend on ones definition

of "distance between two holes". Whereas here mass is unambiguously defined

for each hole (by ADM), there is no natural definition of distance. Perhaps
the easiest intrinsically defined distance is the one given above. For the multi-

Schwarzschild manifold it has the disadvantage that the minimal surfaces are

not easy to locate analytically and one has to resort to numerical methods (see
Brill and Lindquist 1963 for early attempts).

The location of minimal surfaces is interesting for a variety of reasons. It

somewhat simplifies in the case of just two holes, which is automatically ax-

isymmetric. Then the variational principle for the minimal surfaces reduces to a

geodesic principle for curves in the zp-half-plane (cylindrical coordinates). The

appropriately parameterized solution curves just describe a motion of a point
particle in the potential _.I 2,p8 (Nde2 1974). However, general analytic solu-2P
tion still do not exist. Numerical studies by [3] for equal masses (a, a2 =: a)
show the very interesting behaviour above the critical value a/r12 1/1-53,
where two more minimal surfaces appear, each of which enclosing the previous
two. Initially they coincide, but for increasing a/r12 they separate with the inner

one rapidly increasing in area whereas the outermost staying almost constant.

See also [13] for a related discussion.

S3 r =CO

6 //F= d'

S1 Sp.

Fig. 3 Two nearby black holes

For the data discussed below the difficulty of determining location and size of
minimal surfaces is absent, but somewhat as trade-off the concept of individual

mass now becomes slightly more problematic.

Different Topologies for Multi-Hole Data. There are other generalizations
of the single hole case. The ones we discuss now will preserve the existence
of involutive isometries like (32-33), but now for each apparent horizon. The
manifolds they exist on have two or even just one end. The construction is
somewhat involved (Lindquist 1963) and uses the method of images to construct

solutions to (30). This method was introduced by [21] for the time symmetric
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case and later generalized to more general situations (e.g. Bowen and York 1980,
Bowen 1984). (There is also a recent alternative proposal by [6] -) For the general
understanding it will be sufficient to explain the construction for just two holes.

Note that the ADM definition of mass cannot be applied to the individual hole
if it does not have an asymptotically flat end associated to it. But there exist

alternative proposals for mass due to Lindquist (1963) and Penrose (1982) which

can be employed here. (See also the general review by Penrose (1984).) But

it should be pointed out that these definitions do not always apply in more

general situations. For example, for the applicability of Penrose's mass definition
within time-symmetric hypersurfaces the metric of this hypersurface must be

conformally flat (Tod 1983, Beig 1991).

3.2 Two Hole Data

Just as in electrostatics, we shall use the method of images to construct special
solutions to (30). This is done by placing image masses in an auxiliary, fictitious

space so as to enforce special properties of 4i. The properties which will be en-

forced here are such that the inversions (32)(33) on 2-spheres become isometries.

We start by drawing two 2-spheres Si := S(ai,,Fi), i = 1, 2, with radii ai and
centered at Fi. The spheres are non-intersecting and outside each other, so that

3
r12 > a, + a2- On R il we have the diffeomorphisms 1i and li, which in

polar coordinates at 6i take the forms (32) and (33) respectively. These induce
involutions on the space of functions, defined by

ii(f) :=
ai

f oh and Ji(f):=
ai

f 0 fi (37)
ri ri

respectively, where f is any function. The crucial property of these maps is

zAf o Ji = (ai/ri)' Ji o zlf and zAf o ji = (ai/ri ) 4 j, 0 Af, (38)

which in particular implies that the image of a harmonic function will again
be harmonic, although with different singularity structure. The image of the
constant function, f _= 1, under either of these maps is just f, = ai/ri, i.e., the

pole of strength ai at 6i. Moreover, given the unit pole f (i) = 1111i - dIl at (T
outside Si, then its image under Ji is

iiY) =
ai

(39)
116i - dIl Ili - Ii(d) 11

and correspondingly for ji. It represents a pole of strength ai/IloFi - d*1I < 1 at

the image point li(d) (resp. fi(d)).
Writing down the metric h =  p4 dS2 in polar coordinates centered at Fi onef

easily verifies that Ii (Ii) is an isometry of h if !P is invariant under Ji (Ji). The
construction of such an invariant (t is by brute force: One averages the function

(Po =- I over the free product of the groups generated by J1, J2 (il i j2). The
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elements of this free-product-group are strings of alternating J1's and J2's, where
for each string length n > 1 there are the two different elements J, o J2 o J, ...

and J2 o J, o J2 By definition, the string of length 0 is the identity element.

Hence one sets

N

!PN ::-::::: 1 + E E Jil Ji,, ( Po), (40)
n=1

where the first sum is over the two different elements of length n. On R3

fimage pointsl the sequence !PN converges to a smooth function !P for N

oo. Convergence follows because at level N the strengths of the new poles are

suppressed by at least a factor of qN-1, where q = supij ai/(rij - aj) < 1.

Note also that all image poles in Si lie in fact in the interior of the concentric

but smaller sphere of radius a'i := ai2/(rij - aj). Cutting out the interiors of

S(ai,  i) i = 1, 2 thus leaves the spheres Si with small collar neighborhoods
the two sides of which are isometrically mapped into each other by Ii (or fi).
Using two copies of the manifold so obtained we can pairwise identify these
collar neighborhoods using these isometries so that an Einstein-Rosen manifold
with two bridges results. Their topology is that of the twice punctured "handle"
S1 X S2 with each puncture corresponding to an asymptotically flat end. This

construction generalizes to any number N of holes (or bridges), where as manifold

one obtains the twice punctured connected sum of N - 1 handles. (For the notion
of connected sums see e.g. Giulini 1994.) For two holes of equal mass one may

Fig. 4 Three Einstein-Rosen bridges

also just identify S, and S2 and get Misner's wormhole (Misner 1960) if one

uses inversions of the first kind, or its non-orientable counterpart if one uses

inversions of the second kind (Giulini 1990). Both manifolds just have one end.
In the second case one has the additional possibility to just close "close-off"
the spheres Si individually by identifying its antipodal points using I., (Giulini
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Fig. 5 The Misner Wormhole

1992). The manifold has the topology of the once punctured connected sum of
two real projective spaces Rp3. It is orientable and has only one asymptotically
flat end. It can be seen as the generalization to two holes of the once punctured
single Rp3 obtained above. This construction also generalizes to any number N
of holes and one obtains the once punctured connected sum of N Rp3's. These
manifolds are doubly covered by the N-bridge manifolds discussed above.

3.3 Analytic Expressions

In the case of two holes there exists a geometrically adapted coordinate system
- so called spherical bi-polar coordinates - which allows to write down explicit
expressions. We take a, = a2 = a, 61 = dF, and 62 = -&F,. Taking the

ai's equal means that the holes are of equal size (individual mass). We thus
consider a two parameter family of configurations labeled e.g. by mass (overall or

individual) and separation. All image poles are on the z-axis whose strengths a,
and locations d, (positively counted z coordinate) satisfy the coupled recursion
relations

an = an-1
a

dn = dT-
a

(41)
d + dn-1 d + dn-1

where the upper (lower) sign is valid for inversions of the first (second) kind. Us-

ing instead of a, d the parameters c,po defined by a cl sinh yo, d c coth /_10
we can solve the recursion relations by

an -
C

dn = c coth npo, (42)
sinh nyo

'

for the upper sign, and for the lower sign

an -
C

dn = c coth nyo for n even, (43)
sinh npo'

an -
C

I dn = c tanh npo for n odd. (44)
cosh nyo
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In the xz-plane we introduce bi-polar coordinates via exp(p - i7j) + C) - C)
with z + ix. By construction the lines of constant p intersect those of

constant,q orthogonally. Both families consist of circles; those in the first family
are centered on the z-axis with radius cl sinh p at I z I = c coth p, and those in

the second family on the x-axis with radius cl sin 71 at x = c cotq. Rotating this

4

2

o

Yj -2

-4

-2 o '2

X

Fig. 6 The Coordinate System

system around the z-axis with azimuthal angle 0 leads to the spherical bi-polar
coordinates. Explicitly one obtains

sin 71 cos 0 sin q sin sinh p
X = C Y = C (45)

cosh it - cosq' cosh it - cos 71'
z c

cosh ti - cos 71

Together with (42-44) this gives

an
-

-

-

[cosh /-i - COST,] 1/2
(46)

Ili dnFzll [cosh(/-t 2npo) -,F COSq]1/2'

where E = I if one uses inversions of the first kind and E = - 1 if one uses those

of the second kind. The final expression for the metric in (1,L, 77, 0)-coordinates
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can now be written down:

00
4

h
an

+
an

di - di (47)+ 1: Ili + dnez 11 Ili - dnFz 11
n=1

4

(cosh(/-i + 2npo) _ en COS n) -1/2 (dt12 + d772 + sin2q d02). (48)
LnEZ J

It nicely exhibits the isometries (/.t, 77, 0)  -4 (/-t+2po, 77, 0) for 1 and

(p + 2tLo, 7r - q, 0) for e = - 1. The extrinsic curvature matrix for the surfaces of

constant ti with respect to an orthonormal basis in q and 0 direction is given by
M-',94i/,9ti times the unit matrix. Hence K has only a trace part (the surfaces
of constant p are totally umbillic) and vanishes iff p = ILO. Hence in both cases,

6 = 1, the apparent horizons are also totally geodesic (this we already knew

for E = 1).
Next we turn to the expressions for the masses. We shall follow Lindquist

(1963) and define the mass of the first hole by appropriately applying (35): We
sum all the "bare masses" 2ai in S1, each enhanced by an interaction factor

1 + X which includes the interactions of each pole in S, with any pole in S2,
but not with poles in S1. This we write as

m, = 2 E ai 1 + E aj (49)
ics, iES2 rij

with the obvious meaning of "E". Since m, - M2 we write m for the individual

mass and M for the overall mass. The latter is just the sum of all 2ai. Using
(42-44) one obtains (quantities referring to F -1 carry a tilde)

00 00

m = 2cE n
M 4cE

1
(50)

n=1
sinh n/.Lo

n=1
sinh n/,io

for E = 1, and for E - 1

00
2n

+ 2c

00
2n + 1

(51)fh- = 2cE sinh 2npo
Y-

cosh(2n + 1)ntto'
n=1 n=O

0') 00

1 1 4c + 4c (52)
n=1

sinh 2nA0
n=O

cosh(2n + 1)npo'

As mentioned above, we define the distance of the holes as the geodesic
distance of the apparent horizons /-t = /zo- The shortest geodesic connecting
these two surfaces is n = 7r. For e = I its length, 1, may be expressed in closed
form:

I = 2c(l + 2mpo), (53)
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with m from (50). 1 have not been able to find such a compact expression in the

case 6 = - 1.

Like 1, many quantities of interest cannot be evaluated in closed form. In

these cases it may be useful to expand in powers of m/1. Numerical studies show

that additional outer apparent horizons form (i.e. the holes merge) for values

above m/1 -- 0.26 (Smarr et al 1976), so that good convergence holds up to the

merging ratio.

Comparing 6 = 1 to 6 = -1. We have seen that mathematically these two

cases differ by allowing different topologies. But are there more physical aspects
in which they differ? A natural question is how for fixed "physical" variables

m = fiz and I - i the total energies M and 1 1 differ (Giulini 1990). One finds

1 r - M (M)2 +0(3), (54)
M 21

showing that for E - -1 the holes are slightly tighter bound (i.e. they at-

tract stronger), although the additional energy gained until merge is only about
10-2M. This result is qualitatively unchanged if one uses Penrose's instead of

Lindquist's definition of mass.

Another difference shows up in the deformation of the apparent horizons upon
(adiabatic) approach of the two holes. One can define an intrinsic deformation

parameter as follows: Regard (,q, 0) as polar coordinates. The poles are the zeros

of the Killing field 90. Define C,, as twice their geodesic distance. Among the
orbits of (90 is one of greatest length, Qp. The deformation parameter is D

(C,q - QO)IC... One obtains (Giulini 1990)

D =

3 (M)3 +0(4), (55)
2 21

=

3 (M)2 +0(3). (56)
2 21

The power of 2 in (56) seems in conflict with the usual "tidal-force" interpre-
tation. The shapes themselves are also different. Like eggs with the thick ends

pointing towards each other in the first case, and prolonged symmetrically (with
respect to reflections on the equator q = 7r/2) in the second.
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Abstract. I describe approaches to the study of black hole spacetimes via numerical

relativity. After a brief review of the basic formalisms and techniques used in numerical

black hole simulations, I discuss a series of calculations from axisymmetry to full 3D

that can be seen as stepping stones to simulations of the full 3D coalescence of two

black holes. In particular, I emphasize the interplay between perturbation theory and

numerical simulation that build both confidence in present results and tools'to interpret
results of future simulations of coalescence.

1 Introduction

In these lectures I concentrate on recent results in 3D numerical studies of black

holes, building towards extraction of waveforms in 3D. Numerical relativity is

enjoying a surge of interest as computer power increases dramatically, allowing
vastly larger simulations to be performed, and as gravitational wave detectors

promise to actually see signals generated by events such as collisions of black

holes in the Universe[l].
For these reasons, numerical evolutions of black hole data sets are becom-

ing more and more common[2]. As black hole collisions are considered a most

promising source of signals to be detected by these observatories, it is crucial

to have a detailed theoretical understanding of the coalescence process that can

only be achieved through numerical simulation. In particular, it is most impor-
tant to be able to simulate accurately the excitation of the coalescing black

holes, to follow the waves generated in the process, and to extract gravitational
waveforms expected to be seen by detectors. I concentrate in these lectures on

the foundations of this subject, on the present state of numerical black hole sim-

ulations, on the techniques used to extract waveforms, and on the prospects for

obtaining accurate waveforms to be used in conjunction with data collected by
gravitational wave observatories during the next five years.

Black holes present very difficult computational problems to overcome, as

one must (a) deal with singularities inside the black holes, (b) follow the highly
nonlinear regime in the coalescence process taking place near the horizons, and

(c) calculate the linear regime in the radiation zone where the waves represent a

very small perturbation on the background spacetime metric. In the next sections

I discuss progress that has been made to handle each of these problems, and in

particular I focus on a series of testbed calculations of increasing complexity
that brings us closer to the goal of simulating true 3D coalescing black holes.

F.W. Hehl, C. Kiefer, R.J.K. Metzler (Eds.): LNP 514, pp. 244 - 266, 1998
© Springer-Verlag Berlin Heidelberg 1998
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2 Formalisms, Initial Data, and Tools for Numerical
Black Hole Studies

In this section I review briefly a number of important concepts and techniques
needed for understanding numerical approaches to black hole evolutions and

interpreting the results. This is not meant as a detailed review of these subjects,
but rather as a brief description with pointers to sources of more information. I
have borrowed heavily from the PhD thesis of Karen Camarda (with permission).
The entire text of this thesis will be made available online from a link to the
AEI web server (http://www.aei-potsdam.mPg.de) at some future date.

2.1 The 3+1 (ADM) formalism

This material is familiar to many, and developed in more detail in Giulini's
lectures in this volume. Here I just sketch the main ideas mainly to introduce
the notation used here. Einstein's equations treat the time and space variables
on an equal footing. In order to solve these equations numerically, it is convenient
to cast the equations in the form of a Cauchy problem. Once that is done, one

must find an appropriate initial data set. Then, to evolve the initial data set,
one must choose an evolution system and specify spatial boundary conditions
and gauge conditions, as described below.

In the ADM splitting of the Einstein equations, one considers the spacetime
to consist of a foliation of three dimensional spatial hypersurfaces, each the level
surface of some time coordinate (see, e.g., [3]). The invariant distance between
two infinitesimally separated events can then be written as

2 (C,2 t2ds -,3',3i)d + 213idx'dt + -yijdx'dx3.
The so-called lapse function a determines the proper time d-r - adt measured

by an observer falling normal to the hypersurface, or slice. The shift vector 3i
determines the coordinate distance a constant coordinate point moves away from
the normal vector to the slice as one advances from one slice to the next. Finally,
-yij is the metric induced on the given 3D hypersurface specified by t = const.

Einstein's equations that govern the metric tensor -yij can be written in the

deceptively simple form G11v = 87rT,,, where the Einstein tensor G,4v is a non-

linear differential operator on the metric, and T
,,,

is the stress energy tensor. In
vacuum spacetimes T., vanishes, and the Einstein equations reduce to setting
each component of the 4-dimensional Ricci tensor, (4)Rp, to zero. We specialize
to the vacuum case for the rest of this paper.

It is convenient to introduce a tensor known as the extrinsic curvature, Kij,
which describes the curvature of the 3D slice in the 4D Lorentzian space in which
it is embedded. This quantity is defined via the Lie derivative of the 3-metric
with respect to the future-pointing unit normal vector to the 3-surface, i.e.,

-

I
KI-3.- - C

n 7ii2
I

((9t-yij - Dioj - Djoi).2a (2)
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In order to express the Einstein equations in terms of the 3+1 variables, one

decomposes the Ricci tensor into its timelike and spacelike components. Setting
the timelike components (4)RO, to zero leads to the Hamiltonian and momentum
constraints for the 3-metric and the extrinsic curvature:

R + (trK)2 - K'j Kij = 0 (3)

Dj (K'j - 713 trK) = 0. (4)

As described in Giulini's lecture and below, these equations are used to provide
initial data for evolution.

Setting the spacelike components (')Rij to zero, and using the definition of
the extrinsic curvature, results in twelve evolution equations:

(9t7ij = -2aKij + DjOj + Dj,3j (5)

o9tKij = -DiDja + a[Rij + (trK)Kij - 2KikKkj]
+13kDkKij + KikDj,3k + KjkD ,Ok. (6)

In these equations, Rij is the Ricci tensor, R the scalar curvature, and Di the
covariant derivative associated with the metric of the spacelike slices, -Yij.

Analytically, the evolution equations are guaranteed to preserve the con-

straint equations. Numerically, however, they may not. Therefore, it is impor-
tant at least to monitor, if not to enforce, the constraint equations during the

evolution, in order to gauge the size of numerical errors. There are numerous

ideas on how to deal with the constraint equations during a numerical evolution,
which I have discussed somewhat in Ref. [4].

This is the standard evolution system that is used in most calculations in

numerical relativity, and for the numerical results presented in later sections in
this paper. However, it is important to note that this evolution system has been

completely overhauled in recent years into a form that is explicitly hyperbolic.
The equations are recast into a completely first order form in space in time, and
can be written in a special "flux conservative" form:

atU + 19kFk (U) = S(U) (7)

where the vector u displays the set of variables and both "fluxes" Fk and
"sources" S are vector valued functions. Furthermore, under a broad set of
conditions the system can be diagonalized, with a complete set of eigenfields
with real eigenvalues, and in that case the system is said to be hyperbolic. This
technical property has a number of important consequences: (a) It is precisely
the form of the equations known in hydrodynamics, for which many advanced
numerical techniques have been developed. These techniques can now be ap-
plied to the Einstein equations for the first time. (b) The decomposition of the

system into its characteristic fields and eigenvalues (speeds) allows one a better
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understanding of which quantities are propagating and at what speeds, which

can be essential in identifying radiation, gauge information, and can be useful

in applying boundary conditions for ingoing and outgoing quantities.
Building on earlier work by Choquet-Bruhat and Rugerri[5], Bona and Mass6

began to study this problem in the late 1980's, and by 1992 they had developed a

fully hyperbolic system for the Einstein equations with harmonic lapse and zero

shift[6]. This work was generalized recently to apply to a large family of slicing
conditions and arbitrary shift[7]. Independently, another system was developed
by Abrahams, Anderson, Choquet-Bruhat, and York[8]. This system contains an

extra time derivative, so that a second order hyperbolic system for the extrinsic

curvature Kab is found. 1D and 3D codes based on these two new formulations

are under development at present. These works have sparked considerable inter-

est in the relativity community, and now I am aware of several more systems
of hyperbolic equations for the Einstein system (see, e.g., [9, 10]and references

therein). Although all results presented in this paper are based on the ADM

formulation, a large scale computational effort at AEI is presently underway
to compare various formulations of the equations, on problems such as those

described below. This code, called Cactus, will be made available to the com-

munity sometime in 1998. An announcement will made on the AEI web page at

http://www.aei-potsdam.mpg.de when it is ready.

2.2 Initial data

In this section, I again build on Giulini's lectures in this volume on initial data.

For most of the results presented here, we will consider a family of distorted single
black hole initial data. We generalize the Schwarzschild construction discussed

in Giulini's section 3.1 to include a "Brill wave", which he also discussed in his

section 2. In this construction the black hole has been distorted by the presence

of an adjustable torus of nonlinear gravitational waves ("Brill waves") which

surround it. The amplitude and shape of the torus can be specified by hand, as

described below, and can create very highly distorted black holes. Such initial

data sets, and their evolutions in axisymmetry, have been studied extensively, as

described in Refs.[11, 12, 13]. For our purposes, we consider them as convenient

initial data that create a distorted black hole that mimics the merger, just after

coalescence, of two black holes colliding [14].
Following[12], we write the 3-metric as

W =  4 (e2q (d712 + d02) + sin2OdO2) , (8)

where q is a radial coordinate related to the Cartesian coordinates by

, FX2 + y2 + Z2 = e77. (9)

(We have set the scale parameter m in Giulini's section 3.1 to be 2.) Given

a choice for the "Brill wave" function q, the Hamiltonian constraint leads to
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an elliptic equation for the conformal factor 0. The function q represents the

gravitational wave surrounding the black hole, and is chosen to be

q (,q, 0, 0) = a sinn 0(e-(-%+-')2 + e-OZ--b )2 ) (I + C COS2 0) . (10)

Thus, an initial data set is characterized by the parameters (a, b, w, n, c), where,
roughly speaking, a is the amplitude of the Brill wave, b is its radial location, w its

width, and n and c control its angular structure. Note that we have generalized
the original axisymmetric construction of Ref. [12] to full 3D by the addition
of the parameter c. If the amplitude a vanishes, the undistorted Schwarzschild
solution results, leading to

,0 = 2 cosh ( 2) ' (11)

Thus, our Eq. (8) is exactly Giulini's Eq. (30) written in different coordinates.
We note that just as the Schwarzschild geometry has an isometry that leaves

the metric unchanged under the operation q --* -q, our data sets also have this

property, even in the presence of the Brill wave. As discussed in [15, 13] and

below, this condition can also be applied during the evolution and in Cartesian
coordinates as well.

2.3 Gauge conditions

The Einstein equations do not specify evolution equations for the lapse function

a or the shift vector,3'. These quantities are gauge quantities and can be chosen
at will. Thus, the first thing one needs to do before evolving the initial data is to

decide on a gauge condition. We discuss here a few choices for a lapse function,
also known as the slicing condition, because it determines which spatial slices
will be used in the evolution. This subject is discussed in more detail in many
places (see, e.g., [41).

The simplest slicing condition is geodesic slicing, which amounts to setting
a = 1 and 3' = 0. In geodesic slicing, grid points correspond to freely falling
observers. This slicing condition provides a good test of a numerical black hole

code, since for a Schwarzschild black hole, an observer initially on the horizon
will hit the singularity in a time of 7rM (see, e.g., [16]). Thus, a computer code
should "crash" at this time. This has been an important test of many black hole

codes, and has been discussed extensively in, e.g., [15].
Although geodesic slicing is simple, it does not allow one to cover enough

of the spacetime because it allows slices to hit singularities very early in the
evolution. One would like a "singularity avoiding slicing". Such a slicing results
in a lapse function which is very small in regions close to a singularity, effectively
stopping evolution there. One such slicing is maximal slicing. Maximal slicing is

so-called because it produces the lapse that maximizes the volume of the spatial
hypersurface. Because volume elements are small near a singularity, these slices
avoid singularities. It can be shown that this property is equivalent to setting
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the trace of the extrinsic curvature equal to zero. Thus, to obtain the maximal

slicing equation for the lapse, one takes the trace of the evolution equation for

the extrinsic curvature (6) and sets trK equal to zero. This yields the following
elliptic equation for the lapse:

D'Dia = Ra. (12)

Elliptic equations are time-consuming to solve numerically, especially in 3D,
so a number of algebraic singularity-avoiding conditions on the lapse have been

developed as well. These slicings are based on the fact that det (-Yij) will shrink

in the vicinity of a curvature singularity, and since det (-yij) is a simple algebraic
combination of metric functions, it can be cheaply and easily computed. The

algebraic slicings that have been tried generally have the form a = a0f ( ),
where  -. det ( jj-) -

A particular favorite used by the groups at NCSA and

AEI is obtained by setting f ( ) to I + In  , and was used for some of the 3D

simulations discussed below. These algebraic slicings have various drawbacks

as well. For one, they tend to be very "local"; if a problem develops in the

three metric (say a large gradient) in one small region of the calculation, the

lapse responds locally and immediately, which can exacerbate the problem[151.
For another problem, they have been associated with "slicing pathologies" or

cccoordinate shocks" as discussed by Alcubierre [17]. These problems aside, they
have still been found to be very useful in numerical relativity.

2.4 Boundary conditions

When one is evolving a black hole spacetime numerically, one needs to specify
boundary conditions at two places: the inner boundary, generally chosen at the

black hole's "throat", or isometry surface, and the outer boundary, far away
from the black hole. In this section I discuss present approaches to these two

problems.

Inner Boundary

Throat Boundary Conditions The throat of a black hole is the inner-most surface
which is locally an areal minimum. For a Schwarzschild black hole, the throat is

the initial event horizon. The usual way to apply a boundary condition on the
throat is to require the geometry, and thus the metric, to be identical under a

certain mapping from the outside of the throat to the inside. In pictures, this
makes "both sides of the wormhole" have the identical geometry. This mapping
is known as an isometry condition, and was already discussed above and in

Giulini's lectures.
The isometry condition takes the form of a map J which identifies two asymp-

totically flat sheets through the throat [18]:

-Yij V) PJ Nt (J (13)z j
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with

J (i) = a2 (14)
i Ci 2

and OPiii TX_T ,
where a is the radius of the throat centered at 6. The mapping

(13) is applicable to both the metric and the extrinsic curvature tensor compo-
nents. The evolution equations themselves also respect this symmetry if the lapse
and shift variables obey the isometry as well. Generally, the radial component
of the shift must vanish on the throat, and the lapse and extrinsic curvature

components must have the same sign (positive or negative).
The use of the isometry condition, coupled with singularity avoiding slicings,

leads to time slices that advance very slowly inside the horizon and more rapidly
outside. These slicings have been successful to varying degrees, enabling detailed

studies of black hole spacetimes for time periods of up to order t = 100M, where

M is the mass of the black hole. However, these conditions do not completely
solve the problem; they merely serve to delay the breakdown of the numerical

evolution. In the vicinity of the singularity, these slicings inevitably contain a

region of abrupt change near the horizon. This behavior typically manifests itself
in the form of sharply peaked profiles in the spatial metric functions [19], "grid
stretching" [20], large coordinate shift [21] on the black hole throat, etc. These
features are most pronounced where the time slices are sharply bent towards
the past. Numerical simulations will eventually crash due to these pathological
properties of the slicing. For discussions of these problems, see, e.g., [22, 23].
This is one of the fundamental problems of numerical black hole evolution.

Apparent Horizon Boundary Conditions Another approach to the inner bound-

ary is under development by many groups at present. Cosmic censorship suggests
that in physical situations, singularities are hidden inside black hole horizons.

Because the region of spacetime inside the horizon cannot causally affect the

region of interest outside the horizon, one is tempted to cut away the interior

region containing the singularity and evolve only the singularity-free region out-

side. The procedure of cutting away the singular region will drastically reduce
the dynamic range, making it easier to maintain accuracy and stability. With
the singularity removed from the numerical spacetime, there is in principle no

physical reason why black hole codes cannot be made to run indefinitely.
A number of recent papers [22, 23, 24, 25] have demonstrated that a horizon

boundary condition can be realized. There are two basic ideas behind the im-

plementation of the apparent horizon boundary condition: (a) A shift (or grid
velocity in some cases [25]) is used to control the motion of the horizon, tying
the spatial coordinates to the spatial geometry and causal structure. (b) It is

important to use a finite differencing scheme which respects the causal structure

of the spacetime. Since the horizon is a one-way membrane, quantities on the
horizon can be affected only by quantities outside but not inside the horizon.

Hence, in a finite differencing scheme which respects the causal structure, all
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quantities on the horizon can be updated solely in terms of known quantities
residing on or outside the horizon.

These ideas are presently under development by various groups. Although I

will not discuss them further here, as they are not used in the results presented
below, they will most likely play an essential role in developing codes to study the

full 3D coalescence of two black holes. Furthermore, any codes developed with

these techniques will need to be tested on spacetimes such as those discussed

below, to ensure that they are able to reproduce the waveforms from the same

spacetimes.

Outer Boundary Appropriate conditions for the outer boundary have yet to

be derived for 3D. In 1D and 2D codes, the outer boundary is simply placed far

enough away that the spacetime is nearly flat there, and static or flat boundary
conditions can be specified for the evolved functions. However, due to the con-

straints placed on us by limited computer memory, this is not currently possible
in 3D. Most results to date have been computed with the evolved functions kept
static at the outer boundary, even if the boundaries are too close for comfort in

3D!
There are several other approaches under development that promise to im-

prove this situation greatly that I will not have time to explore here, but should

be mentioned. First, by using perturbation theory, as described later in this pa-

per, it is possible to identify quantities in the metric functions that obey wave

equations. These can be used to provide boundary conditions on the metric and

extrinsic curvature functions in an actual evolution, as described in a recent

paper [26]. Secondly, one can use the hyperbolic formulations of the Einstein

equations to find eigenfields, for which outgoing conditions can in principle be

applied. Finally, "Cauchy-Characteristic matching" attempts to match spacelike
slices to null slices at some finite radius, and the null slices can be carried out to

scri. These methods have different strengths and weaknesses, but all promise to

improve boundary treatments significantly, helping to enable longer evolutions

than are presently possible.
One final point: In order to avoid unnecessary computations, when possible,

a useful trick is to take advantage of symmetry inherent in initial data to evolve

only one octant of the Cartesian grid. When this is done, boundary conditions

must also be supplied for the planes x = 0, y = 0, and z = 0. The setting of

boundary conditions on these planes is straightforward as they are determined

by the symmetries of the problem.

3 Ladder of Credibility:
Building Towards Waveforms for LIGO

In this section I present a series of ideas and calculations that lead to what I

call a "Ladder of Credibility". Problems need to be studied in sequence from

easier to more complicated, leading ultimately to the 3D spiraling coalescence
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problem. I will discuss the foundations of black hole perturbation theory, and

show how it can be used both to test and to interpret results of full numerical

simulations, beginning with axisymmetry, and building to full 3D simulations.

3.1 Perturbation theory

In this section I give a very brief overview of the theory of perturbations of

the Schwarzschild spacetime. This is a topic which is very rich and has a long
history. A more detailed discussion can be found in [27]. In the next section, I

will discuss how we apply the theory to study black hole data sets.

One begins the analysis by writing the full metric as a sum of the Schwarz-
0

schild metric 9,,,3 and a small perturbation h,,,3:

0

ga,3  ga,3 +h,,3. (15)

One then plugs this expression into the vacuum Einstein equations to get an

equation for the perturbation tensor h,,3. One can separate off the angular part
of the solution by expanding hc,,,3 in spherical tensor harmonics, as was originally
done by Regge and Wheeler [28]. For each f, m mode, one gets separate equations
for the perturbed metric functions, which we now denote by h(")

ao
There are two independent expansions: one, known as even parity, which does

not introduce any rotational motion to the hole, and one, known as odd parity,
which does. We will concentrate here on even parity perturbations, as these are

the ones which will be relevant for studying the datasets discussed here. The odd

parity perturbations produce equations which are very similar, and both can be

considered in the general case.

We also note here that this treatment is presently restricted to perturbations
of Schwarzschild black holes. For the more general rotating case, one would

like to use the Teukolsky formalism describing perturbations of Kerr. This is

much more complicated, and has not yet been applied to numerical black hole

simulations of the kind discussed in this paper. This is an important research

topic that needs attention soon!
When dealing with perturbations in relativity, one must be careful about

interpreting the various metric components h,,3 in terms of physics. Under a

coordinate transformation of the form x11 -4 x" + 6x", the metric coefficients

will transform as well. One can use this gauge freedom to eliminate certain

metric functions to simplify the corresponding equations for the perturbations.
Another, more powerful approach, developed first by Moncrief, is to consider

linear combinations of the h,,3 and their derivatives that are actually invariant

under the gauge transformation above. In either case, the analysis leads to a

single wave equation for the perturbations of the black hole:

i920(1m) (920(im)
+ 01) (r) V)(M) = 0, (16)

,9r*2 (9t2
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where the potential function VM (r) is given by

V
2M

X (17)
r

I 72M3
-

12M 3M)l +f(f-1)(f+2)(f+1)
A2 r5 r3 r r2A

where r is the standard Schwarzschild radial coordinate, and r* is the so-called

tortoise coordinate, given by r* - r + 2M In (r/2M - 1), and A is a function

of r described below. For all f, the potential function is positive and has a

peak near r = 3M. This equation was first derived by Zerilli [29]. Regge and

Wheeler found an analogous equation for the odd parity perturbations, which are

much simpler than the even parity perturbations, 13 years earlier in 1957 [28].
Note that the potential depends on f, but is independent of m. This remarkable

equation (along with its odd-parity counterpart, known as the Regge-Wheeler
equation) completely describes gravitational perturbations of a Schwarzschild

black hole. It continues to be studied by many researchers now 40 years after

this perturbation program was begun in 1957.

Using this equation, it has been shown that Schwarzschild is stable to per-

turbations, and has characteristic oscillation frequencies known as quasinormal
modes. These modes are solutions to the Zerilli equation as given in Eq. (16)
which are completely ingoing at the horizon (r *

= - oo) and completely outgoing
at infinity (r* = oo). For each f-mode, independent of m, there is a fundamental

frequency, and overtones. These are very important results! One expects that

a black hole, when perturbed in an arbitrary way, will oscillate at these quasi-
normal frequencies. This will give definite signals to look for with gravitational
wave observatories.

These quasinormal frequencies are complex, meaning they have an oscillatory
and a damping part (not growing-black holes are stable!), so the oscillations die

away as the waves carry energy away from the system. The frequencies depend
only on the mass, spin, and charge of the black hole.

There are numerous ways in which this perturbation theory has become es-

sential in numerical black hole simulations, and the rest of this paper will con-

centrate on this subject. First of all, the fact that perturbation theory reveals

that black holes have quasinormal mode oscillations raises expectations about

the evolution of distorted black holes: they should, at least in the linear regime,
oscillate at these frequencies which should be seen in fully nonlinear numeri-

cal simulations. But are they still seen in highly nonlinear interactions, e.g., in

the collision of two black holes? Secondly, as we will see, this perturbation the-

ory provides a method by which to separate out the Schwarzschild background
from the wave degrees of freedom, which can be used to find waves in numerical

simulations. Finally, as the perturbations are governed by their own evolution

equation, this equation should be useful to actually evolve some classes of black

hole initial data, as long as they represent slightly perturbed black holes, and this
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can be used as an important check of fully nonlinear numerical codes. Certainly,
during the late stages of black hole coalescence, the system will settle down to a

slightly perturbed black hole, and numerical codes had better be able to accu-

rately compute waves from such systems if they are to be used to help researchers

find signals in actual data collected by gravitational wave observatories.

3.2 Waveform extraction

In this section I show how to take this perturbation theory and apply it in

a practical way to numerical black hole simulations. One considers now the

numerically generated metric g,,,6,,,m to be the sum of a spherically symmetric
0

part and a perturbation: 90,num :--::g,,,3 +hc,,3, where the perturbation h,,3 is

expanded in tensor spherical harmonics as before. To compute the elements of

h,,,,o in a numerical simulation, one integrates the numerically evolved metric

components 90,num against appropriate spherical harmonics over a coordinate

2-sphere surrounding the black hole. The orthogonality of the Yjm's allows one

to "project" the contributions of the general wave signal into individual modes,
as explained below. The resulting functions can then be combined in a gauge-
invariant way, following the prescription given by Moncrief[30], leading directly
to the Zerilli function. This procedure was originally developed by Abrahams[31]
and developed further by various groups.

As mentioned above, we assume the general metric can be decomposed into
0

its spherical and non-spherical parts. The spherical part 9,,, will of course be

Schwarzschild, but we will in general not know the mass of this Schwarzschild

background, or what coordinate system it will be in. However, in general, we

know it can be written

-N2 0 0 0

0 0 A2 0 0
g,"= 0 0 R2 0 (18)

0 0 0 R2 sin2o

where the functions N, A, and R are functions of our coordinate radius r and

time t. Regge and Wheeler showed that hi., for even-parity perturbations can

be written

htt = -N2H(lm) Y,.0 (19)

ht, = Om)Y,
1 IM (20)

hto = h(fm)Yjm,o0 (21)

hto = Wm)Yjm,,00 (22)

h, 2HYM)y= A
2 IM (23)
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h,o = h YfM,o (24)

h,o = h,fM)YfM,o (25)
2 2hoo = R K( m)Yjm + R G('m)Y, (26)em,eo

2
, ,Oo - cot OY (27)hoo = R G(tm) (Yt, trn,o)

2 2 Oy 2hoo = R K(tm) sin tm + R Om) (Ytm,oo + sin 0 cos OYtm,e) (28)

The spherical part of the metric, given in the functions N, A, and R, can

be obtained by projecting the full metric against YOO, yielding the following
expressions':

N2 f gttdf2 (29)
47

A2
1

g,,df? (30)
4,7r f

R2 f goo +
goo  df2 (31)

87r sin2o)
Each im-mode of hgv can then be obtained by projecting the full metric against
the appropriate Y&n:

h(ltm) f g,eyt ,,o + 2o Yj*m'o dQ (32)
y + 1) sin

 ,,ym)
-

1
2 A2 f g,Yj*m dQ (33)

G(tm)
--

2f
900 -

goo  
Yt*M,00 - cot oyt*m,o-

R (f4-1)(f-1)(f+2) f _( sin20)
1 47-goo (Yt*m,oo -cot OYt*m,o)_ dS? (34)

sin2 Oyf-,00 +
sin20

9K('m) -

+ 1) Om) +
2 goo + -

2o Yt*mdS? (35)
2 2R f ( sin )

In practice, we generally do not extract A to compute ff(tm), but rather we" 2

assume it to have the form I - 2M, where we take M to be the ADM mass of
R

We thank Gabrielle Allen for pointing out the error in the expression for R2 in

reference [11].
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the spacetime. Thus, from this point forward we assume that the background
spacetime metric is adequately represented by Schwarzschild in Schwarzschild
coordinates. This may not be true in the general case, but in our simulations it

has been adequate to assume this.
In the case where the background is Schwarzschild, Moncrief showed that

the Zerilli function is gauge invariant in the sense discussed above, and can be
constructed from the Regge-Wheeler variables as follows:

2(f - 1)(f + 2) 4RS2k2(f') + t(i + 1)Rkl(f')V0M)
fy + 1)

2

A
(36)foF

where

A f(f + 1) - 2 +
6M

(37)
R

0m) K(tm) + SRG(lm) - 2
S 0m) (38)R R 1

Om) 1 i9('m) 2
RK(Im)

k
2 2S 2.\IS M (39)

S 1 -
2M

(40)
R

In order to compute the Regge-Wheeler perturbation functions hl, H2, G,
and K, one needs the spherical metric functions on some 2-sphere. We get these
in 3D by interpolating the Cartesian metric functions onto a surface of constant

coordinate radius, and computing the spherical metric functions from these using
the standard transformation. Second order interpolation is used. In order to

compute the needed radial derivatives of these functions, we first compute the
derivative of the Cartesian metric functions with respect to the coordinate radius
on the Cartesian grid. We interpolate these quantities onto the 2-sphere. Then,
to get the derivatives with respect to the Schwarzschild radius R, we use the
derivative of Eq. (31) with respect to the coordinate r, giving

M
_

1
goo"+

goo df2 (41)19r 16-rR f
As in Ref. [11], it is convenient to normalize the Zerilli function so that the

asymptotic energy flux in each mode is given by k = (1/327r) 2. While previ-
ously only axisymmetric simulations have been studied, we can now study all
non-trivial wave modes, including those with m  4 0.

3.3 Applications

In the sections above, I showed how to extract the gauge invariant Zerilli function
at a given radius on some time slice of the numerical spacetime. In the following
sections I show several ways in which this information can be used, including
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(a) evolving a numerically generated initial data set with perturbation theory,
and (b) extracting waveforms from a fully nonlinear evolution, possibly from the

same data set.

Axisymmetric Distorted Black Holes

Linear Evolution We first apply this method to axisymmetric initial data sets of

the type discussed above. These are single black holes distorted by gravitational
waves. If the amplitude is low enough, this should represent a small perturbation
on a Schwarzschild black hole. The idea is to actually compute 0 (r, t - 0), by
extracting the Zerilli function at every radial grid point on the initial data slice,
and use the Zerilli evolution equation to actually evolve the system as a pertur-
bation. This will allow us to compare the waveform at some radius '01j, (ro, t)
obtained in this way, to that obtained with a well-tested 2D axisymmetric code
that performs full nonlinear evolutions. This will serve as a test of the initial

Zerilli function being given to the linear code, and of the linear evolution code
itself. It will also help us determine for which Brill wave amplitudes this pro-
cedure breaks down. Beyond a certain point, perturbation theory will fail and

nonlinear effects will become important.
Let us first consider the data set (a, b, w, n, c) - (0.05, 1, 1, 4, 0), in the nota-

tion above. In this case the Brill wave is initially far from the black hole, and will

propagate in, hitting it and exciting the normal mode oscillations. In Figure 1

we show the f = 2 and f = 4 Zerilli functions as a function of time, at a radius
of r - 15M. Data are shown from both the linear and 2D nonlinear codes. We
see that for both functions, the linear and nonlinear results line up nicely until
about t = 50M, when a phase shift starts to be significant. This phase shift and

widening of the wave at late times is known from previous studies of numerical
simulations of distorted black hole spacetimes in axisymmetry [11].

(a) 1=2 Zerill'i Function (a) 1=2 Zerillh Function
0.15 0.15, . . . . . . .

0.10 0.10

0.05 0.05

R -OV  I
-0.05 -0.05

-0.10- Linear -0.10 Linear
Non-linear Non-linearV

-0.15 1

' ' . . . . . .
.- -0.1 5

0 20 40 60 80 100 0 20 40 60 80 100

t/M t/M

Fig. 1 We show the (a)f = 2 and (b)f = 4 Zerilli functions as a function
of time, extracted during linear and 2D nonlinear evolutions of the data set

(a, b, w, n, c) = (0.05, 1, 1, 4, 0). The data were extracted at a radius of r = 15M.
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As second example, let us look at (a, b, w, n, c) = (0-05, 0, 1, 4, 0). In this case

the Brill wave is initially right on the throat. In Figure 2 we show the i = 2 and

the f = 4 waveforms as a function of time extracted at a radius of r = 15M.

Again, data from both the linear and 2D nonlinear codes are shown. The data

line up well until about t = 50M, when phase errors begin to be significant.

(a) 1=2 Zerilli Function (b) 1=4 Zer*lll*l Function
0.06F- 0.0 10 F_-

0.04
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0.000
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-0.04 Linear Linear

- .......... Non-lineor
........... Non-linear-

-0,06 . . . -0.010
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t/M t/M

Fig. 2 We show the (a)t = 2 and (b)t = 4 Zerilli functions as a function

of time, extracted during linear and 2D nonlinear evolutions of the data set

(a, b, w, n, c) = (0.05, 0, 1, 4, 0). The data were extracted at a radius of r = 15M.

This is the first step in our ladder of credibility. We have shown that these

data sets provide an important testbed for a numerical black hole evolution.

First they confirm that these data sets can be treated as linear perturbations on a

Schwarzschild background, since both linear and fully nonlinear evolutions agree.

Second, they remarkably confirm the results of a complex, nonlinear evolution

code which evolves a black hole in maximal slicing. This gives great confidence

in the ability of this code to treat black holes and extract waveforms, even in

the more highly distorted cases where perturbation theory breaks down (but
waveform extraction will not necessarily break down, at least far from the hole).
We will use this technique in various ways below.

Axisymmetric Black Hole Collisions We now turn to another application
of this basic idea of evolving dynamic black hole spacetimes with perturbation
theory, but this time we consider two black holes colliding head on. This might
seem to be impossible to treat perturbatively, but there are two limits in which

perturbation theory has been shown to be incredibly successful. First, if the

two holes are so close together initially that they have actually already merged
into one, they might be considered as a single perturbed Schwarzschild hole (the
so-called "close limit"). Using similar ideas to those discussed above, Price and

Pullin and others [32, 33, 34, 35, 36] used this technique to produce waveforms
for colliding black holes in the Misner and Brill and Lindquist data described by
Giulini. In fact, the original paper of Price and Pullin [32] is what spurred on so
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much interest in these many applications of perturbation theory as a check on

numerical relativity. Second, when the holes are very far apart, one can consider

one black hole as a test particle falling into the other. Then one rescales the

answer obtained by formally allowing the "test particle" to be a black hole with

the same mass as the one it is falling into[37, 14, 33].
The details of this success has provided insights into the nature of collisions of

holes, and should also apply to many systems of dynamical black holes. The wave-

forms and energies agree remarkably well with numerical simulations. Moreover,
second order perturbation theory [36] spectacularly improved the agreement be-

tween the close limit and full numerical results for even larger distances between
the holes, although ultimately beyond a certain limit the approximation is simply
inappropriate and breaks down.

The success of these techniques suggests, among other things, that these

are very powerful methods that can be used hand-in-hand with fully nonlinear
numerical evolutions, and can be applied in a variety of black hole spacetimes
where one might naively think they would not work. For these reasons, many re-

searchers are continuing to apply these techniques to the axisymmetric case with

more and more complicated black hole spacetimes (e.g., the collision of counter-

rotating, spinning black holes, colloquially known as the "cosmic screw".) Fur-

thermore, these techniques will become even more essential in 3D, where we

cannot achieve resolution as high as we can with 2D codes.

Finally, this is yet another rung on the "ladder of credibility": we now have
not only slightly perturbed Schwarzschild spacetimes to consider, but also a

series of highly nontrivial colliding black hole spacetimes that are now well un-

derstood in axisymmetry due to the nice interplay between perturbative and

fully numerical treatments of the same problems. These then provide excellent
testbeds for 3D simulations, which we turn to next.

3D Testbeds Armed with robust and well understood axisymmetric black hole

codes, we now consider the 3D evolution of axisymmetric distorted black hole
initial data. These same axisymmetric initial data sets can be ported into a 3D
code in cartesian coordinates, evolved in 3D, and the results can be compared
to those obtained with the 2D, axisymmetric code discussed above.

In the first of these simulations, we study the evolution of the distorted

single black hole initial data set (a, b, w, n, c) = (0 - 5, 0, 1, 2, 0). As the azimuthal

parameter c is zero, this is axisymmetric and can also be evolved in 2D. In

Figure 3a we show the result of the 3D evolution, focusing on the t = 2 Zerilli
function extracted at a radius r = 8.7M as a function of time. Superimposed
on this plot is the same function computed during the evolution of the same

initial data set with a 2D code, based on the one described in detail in [11, 13].
The agreement of the two plots over the first peak is a strong affirmation of the
3D evolution code and extraction routine. It is important to note that the 2D
results were computed with a different slicing (maximal), different coordinate

system, and a different spatial gauge. Yet the physical results obtained by these
two different numerical codes, as measured by the waveforms, are remarkably
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similar (as one would hope). A full evolution with the 2D code to t = 100M, by
which time the hole has settled down to Schwarzschild, shows that the energy
emitted in this mode at that time is about 4 x 10-1M. This result shows that

now it is possible in full 3D numerical relativity, in cartesian coordinates, to

study the evolution and waveforms emitted from highly distorted black holes,
even when the final waves leaving the system carry a small amount of energy.

In Fig. 3b we show the f = 4 Zerilli function extracted at the same radius,
computed during evolutions with 2D and 3D codes. This waveform is more diffi-

cult to extract, because it has a higher frequency in both its angular and radial

dependence, and it has a much lower amplitude: the energy emitted in this mode

is three orders of magnitude smaller than the energy emitted in the f = 2 mode,
i. e., 10-6M, yet it can still be accurately evolved and extracted. This is quite
a remarkable result, and bodes well for the ability of numerical relativity codes

ultimately to compute accurate waveforms that will be of great use in inter-

preting data collected by gravitational wave detectors. (However, as I point out

below, there is a quite a long way to go before the general 3D coalescence can

be studied!)

(a) 1=2 Zerilli Function (b) 1=4 Zerilli Function
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Fig. 3 We show the (a) t = 2 and (b) t 4 Zerilli functions vs. time, extracted during
2D and 3D evolutions of the data set (a, b, w, n , c) = (0. 5, 0, 1, 2, 0). The functions were

extracted at a radius of 8.7M. The 2D data were obtained with 202 x 54 grid points,
giving a resolution of  Aq = AO = 0.03. The 3D data were obtained using 3003 grid
points and a resolution of Ax = 0.0816M.

These results have been reported in much more detail in [38, 39].

TYue 3D Distorted Black Holes We now turn to radiation extraction in true

3D black hole evolutions. This is of major importance for the connection between

numerical relativity and gravitational wave astronomy. Gravitational wave de-

tectors such as LIGO, VIRGO, and GEO will measure these waves directly, and

may depend on numerical relativity to provide templates to both extract the

signals from the experimental data and to interpret the results. The preliminary
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results presented here represent the first time that non-axisymmetric modes of

gravitational waves have been extracted in a numerical black hole spacetime.
In the sections above, I showed by careful comparison to 2D results that a

3D code is able to accurately simulate distorted black holes. Armed with these

tests, we now consider evolutions of initial data sets which are not axisymmetric,
i.e., data sets which have non-vanishing azimuthal parameter c.

Black hole perturbation theory predicts that for each f-mode, there is a series

of quasinormal mode frequencies of the hole, as discussed above. However, we

have previously dealt only with axisymmetric distorted black holes. For full 3D

distorted holes, there are quasinormal mode frequencies for each m-mode as

well. For rotating black holes, the m-modes are all distinct, and have different

frequencies depending on the angular momentum of the hole. However, for non-

rotating black holes, it turns out that for a given f-value, all m-modes have

the same quasinormal mode frequency (remember above we showed that the

Zerilli potential V(r), which governs the perturbation equations, is independent
of m.) Hence, when we compare our results with the known quasinormal mode
frequencies, we expect all m-modes to fit the m = 0 quasinormal mode.

In Figure 4 we show the f = 2 Zerilli functions computed during an evolution

of the fully 3D initial data set (a, b, w, n, c) = (0 - 5, 0, 1, 2, 0-5). This computation
was done with 2003 grid points and a resolution of zlx = 0.106M. The Zerilli

functions were extracted at a radius of r = 8.46M. For each mode we also show

the fit to the two lowest f = 2 quasinormal modes. The good agreement indicates

that these waveforms have the correct frequency. We do not expect to be able

to fit quasinormal modes to the waveforms initially, because here the waveform.

is highly dependent on the particular dynamics of the situation, and the black

hole has not yet settled down to a perturbed Schwarzschild black hole.
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Fig. 4 We show the f = 2, m 0 and f 2, m = 2 Zerilli functions ex-

tracted at r 8.46M as a function of time for the evolution of the initial data set

(a, b, w, n, c) (0. 5, 0, 1, 2, 0.5). Also plotted are fits of the two lowest t = 2 quasinor-
mal modes to each waveform. The calculation was done with 2003 grid points and a

resolution of  Ax = 0.106M, placing the outer boundary along an axis at approximately
x = 21.2M.
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This f = 2, m = 2 mode is to my knowledge the first nonaxisymmetric
wave mode extracted from a 3D black hole evolution. Such modes are extracted

not just because they can be, but because they should be quite important for

gravitational wave observatories. It turns out that the f = 2, m = 2 is considered

to be one of the most promising black hole modes to be seen by gravitational
wave detector. In realistic black hole coalescence, the final hole is expected to

have a large amount of angular momentum, possibly near the Kerr limit a = 1.

It turns out that this particular mode is one of the least damped (much less

damped than for Schwarzschild, as seen here), and is also expected to be strongly
excited[40]. Therefore, it is important to begin exhaustively testing the code's

ability to generate and cleanly extract such nonaxisymmetric modes, even in the

case studied here without rotation.

Many more modes can be extracted, including f = 4, m modes, and details

and analysis can be found in [38, 41]. Note that these nonspherical black hole

evolutions have not yet been compared against perturbation theory evolutions.

This is an important missing "rung" in the ladder of credibility that is in progress
at present. These rungs will continue all the way to the "Holy Grail" of numerical

relativity: a code that can truly simulate the full 3D coalescence of black holes in

orbit about each other, complete with accurate waveforms for comparison with

observations.

4 How Far Do We Have to Go?

Unfortunately, we still have a very long way to go! In these lectures I have tried to

give an overview of the basic techniques needed in numerical relativity applied to

black hole evolutions, along with an assessment of the state of the art in extract-

ing waveforms. The progress has been good and exciting! However, although one

can now do 3D evolutions of distorted black holes, and accurately extract waves

emitted even at the 10-IM level, the calculations one can presently do are ac-

tually very limited. With present techniques, the evolutions can only be carried

out for a fraction of the time required to simulate the 3D orbiting coalescence.

Most of what as been described here has been with certain symmetries, or with a

single black hole in full 3D. At the present time, I am only aware of one attempt
to study the collision of two black holes in 3D without any symmetries, which

was recently reported by Briigmann [42]. However, this calculation is treated as

a feasibility study, without detailed waveform extraction at this point, and again
the evolution times are quite limited (less than those reported here.)

Many techniques to handle this more general case are under development,
such as hyperbolic formulations of the Einstein equations and the advanced

numerical methods they bring[25], adaptive mesh refinement that will enable

placing the outer boundary farther away while resolving the strong field region
where the waves are generated, and apparent horizon boundary conditions that

excise the interiors of the black holes, thus avoiding the difficulties associated

with singularity avoiding slicings.
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All of these techniques, and others, may be needed to handle the more gen-

eral, long term evolution of coalescing black holes. Each of these techniques
may introduce numerical artifacts, even if at very low amplitude, to which the

waveforms may be very sensitive. As new methods are developed and applied to

numerical black hole simulations, they can now be tested on evolutions such as

those presented here to ensure that the waveforms are accurately represented in

the data.
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Measurement Theory and General Relativity
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Abstract. The theory of measurement is employed to elucidate the physical basis of

general relativity. For measurements involving phenomena with intrinsic length or time

scales, such scales must in general be negligible compared to the (translational and ro-

tational) scales characteristic of the motion of the observer. Thus general relativity is

a consistent theory of coincidences so long as these involve classical point particles and

electromagnetic rays (geometric optics). Wave "optics" is discussed and the limitations

of the standard theory in this regime are pointed out. A nonlocal theory of acceler-

ated observers is briefly described that is consistent with observation and excludes the

possibility of existence of a fundamental scalar field in nature.

1 Introduction

The quantum theory of measurement deals with observers and measuring de-

vices that are all inertial. The universality of gravitational interaction implies,
however, that gravitational fields cannot be ignored in general. Moreover, most

measurements are performed in laboratories on the Earth, which - among other

motions - rotates about its proper axis; in fact, measurements are generally per-
formed by devices and observers that are accelerated. It is therefore necessary
to investigate the assumptions that underlie the extension of physics to accel-

erated systems and gravitational fields. This amounts to a determination of the

physical foundations of Einstein's theory of gravitation inasmuch as this theory
is in agreement with all observational data available at present [1]. A critical

examination of general relativity from the standpoint of measurement theory
leads to certain basic limitations that are the main subject of this paper.

2 Physical Elements of General Relativity

The basic concepts of general relativity can be uniquely determined starting from
the consideration of what observers would measure in physical experiments. This

results in the four building blocks of general relativity that are described below.

(i) The fundamental laws of microphysics have been formulated with respect
to inertial observers. The measurements of inertial observers in Minkowski space-
time are connected via inhomogeneous Lorentz transformations (i.e. Poincar6

transformations). An inertial observer is an observer at rest in an inertial refer-

ence system; in fact, such an observer can be thought of as carrying a natural

orthonormal tetrad frame A') along its worldline. Here A'(O) = dx" /d7- is the

F.W.Hehl, C. Kiefer, R.J.K. Metzler (Eds.): LNP 514, pp. 269 - 284, 1998
© Springer-Verlag Berlin Heidelberg 1998
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vector tangent to the worldline ("time axis") and Al(i) I
i = 1, 2, 3, are the natural

spatial axes of the frame so that A')= J4. Thus Maxwell's equations in this in-

ertial frame refer to the fields actually measured by these standard observers, i.e.

F4, A" Av -+ (E, B) .
One can consider other inertial observers as being at rest

in other inertial systems in uniform motion with respect to the original reference

system described above. To express the measurements of the other observers, one

could transform to their rest frames; alternatively, one could consider physics in

the original inertial system and simply describe all measurements with respect
to a single system of inertial coordinates x' = (d, x). In the latter case, which
is adopted here for the sake of convenience, one can describe the determination
of the electromagnetic field by a moving inertial observer as the projection of
the fi ld on the observer's frame,

v
 4(c,  v(,P(a) p) F

Let us now suppose that inertial observers choose to employ arbitrary smooth

spacetime coordinates x" = x" (x"). It turns out that - so long as the observers
remain inertial - this extension is purely mathematical in nature and can be

accomplished without introducing any new physical assumption into the theory.
Consider, for instance, the Lorentz force law for a particle of mass m and charge
q,

d2XIi dxv
M

d-r2
- qF4 v dr

(2)

Here d-r is the invariant spacetime interval measured along the path of the par-
ticle by the standard inertial observers, i.e. d7- = cdtl-y and -y is the Lorentz
factor. Assuming the invariance of this interval under the change of coordinates,
d,r2 = ?7,4vdx1'dxv = g,0dx`dx'0 with

I
(9X4 aXV

(3)ce)3 ?htv ax- axo,

one can simply write equation (2) as

M
d2XIP

+ J,/P ,
dx"' dx'o

qF'p
dx"

(4)
L
dr2 aja (X dr dr

J

"* dr '

with the Christoffel connection

.T,1P
92XIA '9X/P

(5)a,3 aeuaeo qxtL

and the auxiliary field variables

1pa 1
(9X,P ax,o'

F X 5XI, '9xv
P" (x). (6)
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In Euclidean space, one can always introduce curvilinear coordinates for the sake

of convenience; similarly, one can introduce arbitrary (smooth and admissible)
coordinates in Minkowski spacetime. In this way, tensors under the inhomoge-
neous Lorentz group become tensors under general coordinate transformations.

(ii) To extend measurements to accelerated observers in Minkowski space-

time, a physical hypothesis is required that would connect the measurement

of accelerated and inertial observers. In the standard approach to the theory
of relativity, the assumption is that an accelerated observer is at each instant

physically equivalent to a hypothetical momentarily comoving inertial observer.

Thus an accelerated observer passes through an infinite sequence of such hypo-
thetical inertial observers. Mathematically, this basic assumption is equivalent
to replacing a curve by its tangent vector at each point as illustrated in Figure
1. This assumption is clearly valid for Newtonian point particles, since at each

t
A

X

Fig. 1 The worldline of an accelerated observer in Minkowski spacetime is curved. The

hypothesis of locality postulates that the observer is at each moment locally inertial.

instant the accelerated particle and the momentarily comoving inertial particle
have the same state, i.e. the same position and velocity. Moreover, it can be nat-

urally extended to all pointlike phenomena; that is, the assumption is also valid

if all phenomena are thought of in terms of pointlike coincidences of Newtonian

point particles and null rays. However, in more general cases involving intrinsic

temporal and spatial scales the above assumption will be referred to as "the hy-
pothesis of locality" [2]. Imagine, for instance, an accelerated measuring device;
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clearly, it is affected by internal inertial effects. If these inertial effects integrate
to a perceptible influence on the outcome of a measurement, the hypothesis of

locality is violated. On the other hand, if the timescale of the measurement is

so short that the influence of the inertial effects is negligible, then the device is
C6standard", i.e. its acceleration can be locally ignored. The hypothesis of locality
applied to a clock implies that a standard clock will measure proper timer along
its path; therefore, the hypothesis of locality is the generalization of the "clock

hypothesis" to all standard measuring devices [3, 4, 5, 6, 7]. Moreover, the local

equivalence of an accelerated observer with an infinite sequence of comoving in-

ertial observers endows the accelerated observer with the continuously varying
tetrad system of the inertial observers. This variation can be characterized by a

translational acceleration g(-r) and a rotation of the spatial frame with frequency
f?(-r); alternatively, one may associate acceleration scales (such as c

2 Ig and clf?)
with the motion of the observer [8, 9].

The extension of measurements to all observers that can use arbitrary coor-

dinates in Minkowski spacetime implies that one can formulate physical laws in a

generally covariant form. To extend this covariance further to curved spacetime
manifolds, Einstein's principle of equivalence is indispensable.

(iii) Einstein's principle of equivalence embodies the universality of the grav-
itational interaction and is the cornerstone of general relativity. This principle
generalizes a result of Newtonian gravitation that is directly based upon the

principle of equivalence of inertial and gravitational masses. Einstein postulated
a certain equivalence between an observer in a gravitational field and an acceler-

ated observer in Minkowski spacetime. This heuristic principle, when combined
with the hypothesis of locality, implies that an observer in a gravitational field
is locally inertial. Thus gravitation has to do with the way local inertial frames

are connected to each other. The simplest possibility is through the pseudo-
Riemannian curvature of the spacetime manifold; therefore, in general relativity
the gravitational field is identified with the spacetime curvature.

(iv) The correspondence between general relativity and Newton's theory of

gravitation is established via the gravitational field equation. That is, within the
framework of Riemannian geometry the gravitational field equations are the sim-

plest generalizations of Poisson's equation, V24N :::: -47rGp, for the Newtonian

potential  PN -
In general relativity, the Newtonian potential is generalized and

replaced by the ten components of the metric tensor g, v; similarly, the accelera-
tion of gravity is replaced by the Christoffel connection F' and the tidal matrix

,92,PN1aX1,9X3 is replaced by the Riemann curvature tensor R,4vpo,* In Newtonian

gravitation, the trace of the tidal matrix is connected to the local density of

matter p by Newton's constant of gravitation. Similarly, in general relativity the

trace of the Riemann tensor is connected to the energy-momentum tensor of

matter,

R,4v g,4vg"13R,3 =
87rG

(7)
2 C4 TMV
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3 Measurements of Accelerated Observers

The primary measurements of an observer are those of duration and distance.

In general relativity, the hypothesis of locality is indispensable for the interpre-
tation of the results of measurements by accelerated observers. In particular,
we define "standard" measuring devices to be those that are compatible with

the locality assumption. Thus a standard clock measures proper time along its

trajectory; similarly, a standard measuring rod is usually assumed to provide a

proper measure of distance. At each instant of time, the accelerated observer is

momentarily equivalent to a hypothetical comoving inertial observer; therefore,
both observers have the instantaneous Euclidean space in common. It would

appear then that placing standard measuring rods one next to the other and so

on should lead to the proper measurement of spatial distances by accelerated
observers.

An important issue is the extent to which such measurements of time and

distance can lead to the establishment of an admissible coordinate system around

the accelerated observer. Well-known investigations have led to the result that

such coordinate systems have limited spatial extent given by the acceleration

lengths (e.g. c'lg and clf?), since these are the only length scales in the problem.
The method of construction of accelerated coordinate systems could even be

nonlocal; however, limitations would still exist as recently pointed out by Marzlin

[10]. It might therefore appear that (local and nonlocal) coordinate systems
could in general be constructed in a cylindrical region around the worldline
of the accelerated observer. However, this conclusion is ultimately based upon
the use of standard measuring rods whose existence turns out to be in conflict
with the hypothesis of locality. A fundamental problem associated with length
measurements is the following: a standard measuring rod, however small, has
nevertheless a nonzero spatial extent whereas the hypothesis of locality is only
pointwise valid. This implies a rather basic limitation on the measurement of

length by accelerated observers and can be illustrated by the following thought
experiment. Imagine two observers 01 and 02 at rest in an inertial frame. For

t < 0, their coordinates x:' = (ct, x) are (ct, 0, 0, 0) and (ct, L, 0, 0), respectively.
At t = 0, they are accelerated from rest along the x-direction in exactly the same

way so that at time t > 0 each has a velocity v = vR. The distance between 01
and 02 as measured by observers at rest in the inertial frame is always L, since

t t

X, (t) = fo v dt and X2(t) = L + fo v dt (8)

for t > 0 and X2 (t) - X1 (t) = L. What is the distance between 01 and 02 as

measured by comoving observers? It turns out that the hypothesis of locality
provides a unique answer to this question only in the limit L -+ 0. To show this,
let us first note that at a given time i > 0, 01 and 02 have the same speed
 = co. The hypothesis of locality implies that the accelerated observers pass

through an infinite sequence of momentarily comoving inertial observers. Thus

imagine the Lorentz transformation between the inertial frame x' = (ct, x) and
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the "instantaneous" inertial rest frame x' (ct', x') of the observers at t given
by

C(t - -Y(Ct' +,3x'), X - i = 7(x' + q3t'), Y = Y', Z = Z" (9)

where 7 = (1 _,32)-1/2 is the Lorentz factor at i. The events with coordinates

01 : (ci, xi, 0, 0) and 02 : (Ci) X2) 01 0) in the original inertial frame have coor-

dinates 01 : (ctj, x'j, 0, 0) and 02 : (Ct'2 7 X12 1 01 0) in the instantaneous inertial
frame. It follows from the Lorentz transformation (9) that L, = x2 - x'l = 7L.
This has a simple physical interpretation: The Lorentz-FitzGerald contracted
distance between 01 and 02 is always L, hence the "actual" distance between

01 and 02 must be larger by the Lorentz ^ -factor. One can imagine that the
distance between 01 and 02 is populated by a large number of hypothetical ac-

celerated observers moving in exactly the same way as 01 and 02 and carrying
infinitesimal measuring rods that are placed side by side to measure the distance
under consideration.

It must be equally correct to replace the infinite sequence of inertial systems
x" = (ct', x') by a continuously moving frame. To this end, we must choose the
worldline V (r) of one of the accelerated observers - such as 01, 02, or any of
the hypothetical observers in between the two - and note that at any instant of

proper time r along the worldline, this fiducial observer is in a Euclidean space
with Cartesian coordinates X in accordance with the hypothesis of locality. The
connection between the coordinates x11 in the original inertial frame and the new
coordinates X11 is given by X0 -r and

A D
X -Zt'(X' ) + X'AM, (10)

where X14 is the natural tetrad frame along the worldline of the reference ob-(i)
server. Specifically, the fiducial observer is instantaneously inertial by the hy-
pothesis of locality and hence assigns coordinates X' = -r and Xi = o, ,X/IW

- 4
to spacetime events. Here  11 is a unit spacelike vector normal to X(0) at YA(7-)
along a straight line that connects V(r) to an event with coordinates xt, in the

original background inertial frame, are direction cosines and o, = JXJ is

the proper length of this spacelike line segment. To develop this approach fur-

ther, it is necessary to specify the motion explicitly. Thus we assume that 01
and 02 are uniformly accelerated with acceleration g and we choose 01 to be
the fiducial observer. The natural orthonormal nonrotating tetrad frame along
the worldline of 01 is given by

XA
(0) (7,37, 0, 0), (11)
V

(1) (07, -Y, 0, 0), (12)

(2) = (0, 0, 1, 0), (13)
XA

(3) = (0, 0, 0, 1), (14)
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just as for the Lorentz transformation (9). Then the inertial frame x' - (d, x, y, z)
and the Fermi frame X' = (cT, X, Y, Z) are connected by

Ct= X+
C

sinh (gTIc) , (15)
9

X = X+
C

cosh (gTIc)
C

(16)
9 9

y = Y and z = Z. The spatial origin of the new coordinate system is occupied by
01 such that T" (-r) = L (3-y, -y - 1, 0, 0), where 3 = tanh (-ri 1,C), -Y = cosh(ri 1,C),
'C = C21g is the acceleration length and -ri is the proper time along 01. As before,
at any given time i > 0 the events 01 (d, x1, 0, 0) and 02 : (d, X21 0, 0) now

correspond to 01 : (-rl, X1, 0, 0) and 02 (-r2, X2, 07 0), where X2 - X1 = L and

X, = 0 by construction. The distance between 01 and 02 in this Fermi frame is

then given by LF = X2 - X1 = X2- It follows from equations (15) and (16) that

d C sinh (-ri 1,C), (17)
x 1 C [cosh (-ri 1,C) - 1] , (18)
Ci (X2 + C) sinh (-r2 /L), (19)
X2 (X2 + C) cosh (r2 1,C) - L. (20)

Equations (19) and (20) can be written as

(X2 + C) 2
- (X2 +,C)2 _ C2j2' (21)

where X2 = x, +L and x, and i are given by equations (18) and (17), respectively.
Thus one finds that

LF + 2c-y + 62)1/2 _ 1] (22)

wherec = LIL = gLIc2 and 7 = (1 +g2i2/C2)1/2 .
The length in the Fermi frame

LF must be compared with the corresponding result from the instantaneous

Lorentz frame L' = 7L; indeed, the ratio LFIL' approaches unity only in the
limit 6 -+ 0. This is a remarkable result that has far-reaching consequences. Let

us note that for E < 1,

LF IL' 1 - 1)32 (23)
2

2to first order in E; however, over a long time > c1g the quantity 3 ^ ,E may not

remain small compared to unity. Moreover, LFIL' -+ 0 as gilc -* oo and hence

-y -+ oo. It follows from these considerations that consistency is achieved for -YE  

0; hence, the acceleration length and time, i.e. c2Ig and c1g, respectively, place
severe limitations on the domain of applicability of the hypothesis of locality.
Furthermore, let us suppose that the Fermi frame is established along 02 instead
of 01. Then the resulting distance would be different from LF; however, all such

lengths agree in the E -+ 0 limit.
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It is interesting to mention here another measure of distance from 01 and

02 using light signals. Let 01 send a signal at r - that reaches 02 at -r2 and is

immediately returned to 01. The return signal reaches 01 at 7'1+, where -r2 =

'r, -rl )/2. Observer 01 would then determine the distance to 02 via Lph =

c(-rl+ - 71 )/2, which works out to be

Lph = L In (1 + LFIL). (24)

It is clear by symmetry that if 02 initiates a light signal to 01, etc., then the

resulting light travel time would be different, since in equation (24) the Fermi

length would be the one determined on the basis Of 02 as the fiducial observer.

Nevertheless, for 7,E negligibly small all these length measurements agree with
each other.

The simple example that has been worked out here can be generalized to

arbitrary but identical velocity for 01 and 02. The comparison of the instanta-
neous local inertial frame with the continuously moving geodesic frame leads to

the conclusion that the basic length and time scales under consideration must
in general be negligible compared to the relevant acceleration scales. This has

significant consequences for the comparison of theory and experiment in general
relativity [2]; in particular, the physical significance of Fermi coordinates is in

general further limited to the immediate neighborhood of the observer and wave

equations are meaningful only within this domain.

It follows from these considerations that the physical dimensions of any stan-
dard measuring device must be negligible compared to the.relevant acceleration
length L and the duration of the measurement must in general be negligible com-
pared to Clc. These are not significant limitations for typical accelerations in
the laboratory; for instance, for the Earth's acceleration of gravity C2 Ig -- 11yr.
Moreover, observers at rest on the Earth typically refer their measurements to ro-

tating Earth-based coordinates; hence, this coordinate system is mathematically
valid up to a "light cylinder" at a radius of C = cl0 -- 28 AU. But physically
valid length measurements can extend over a neighborhood of the observer with
a radius much smaller than L. In fact, this "light cylinder" has no bearing on

astronomical observations, since observers simply take into account the absolute
rotation of the Earth and reduce astronomical data by taking due account of
aberration and Doppler effects.

The standard "classical" measuring device of mass y has wave characteristics,
given by its Compton wavelength hlltc and period _

that must be negligiblehIlIC2,
in comparison with the scales of length and time that characterize the device as

a consequence of the quasi-classical approximation. For instance, a clock of mass

ti must have a resolution exceeding h1pc2; similarly, the mass of a clock with
resolution 0 must exceed hl0c2. These assertions follow from the application of
the uncertainty principle to measurements performed by a standard device [11,
12]. When such quantum limitations are combined with the classical limitations
discussed above, on finds that C > h1jtc; therefore, the translational acceleration
of a standard classical measuring device must be much less than tIC3 1h and its
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rotational frequency must be much less than yc21h. The idea of the existence of

a maximal proper acceleration is due to Caianiello [13, 2, 14].

4 Measurements in Gravitational Fields

The physical results of the previous section can be extended to local measure-

ments in a gravitational field via an interpretation of the Einstein principle of

equivalence in terms of the gravitational Larmor theorem.
A century ago, Larmor [15] established a local equivalence between mag-

netism and rotation for all particles with the same charge to mass ratio (q/m).
That is, charged particle phenomena in a magnetic field correspond to those in

a frame rotating with the Larmor frequency S?L = qB/2mc. This local relation

is valid to first order in field strength for slowly varying fields and slowly moving
charged particles. Such a correspondence also exists for electric fields and lin-

early accelerated frames. It turns out that Larmor's theorem can be generalized
in a natural way to the case of gravitational fields.

The close analogy between Coulomb's law of electricity and Newton's law of

gravitation leads to an interpretation of Newtonian gravity in terms of nonrel-
ativistic theory of the gravitoelectric field. Moreover, any theory that combines

Newtonian gravity with Lorentz invariance in a consistent manner is expected to

contain a gravitomagnetic field as well. In fact, in general relativity the exterior

spacetime metric for a rotating mass may be expressed in the linear approxima-
tion as

ds2 C2(1 _
2

!PN) dt2 + (I +
2

!PN) 6ij dx' dxj -

4
(Ag * dx) dt, (25)C2 C2 C

where 4 N GMIr is the Newtonian potential and Ag = GJ x r/cr' is the

gravitomagnetic vector potential. The gravitoelectric and gravitomagnetic fields

are then given by Eg = -V4N and Bg = V x Ag, respectively.
It is possible to formulate a gravitational Larmor theorem [16] by postulating

that the gravitoelectric and gravitomagnetic charges are given by qE = -M

and qB = -2m, respectively. In fact, qBlqE = 2 since gravitation is a spin-
2 field. Thus QL - -Bg1c, which is consistent with the fact that an ideal

gyroscope at a given position in space would precess in the gravitomagnetic field
with a frequency S?p = Bg1c. The general form of the gravitational Larmor
theorem is then an interpretation of the Einstein principle of equivalence for
linear gravitational fields in a finite neighborhood of an observer; for instance,
in the gravitational field of the Earth an observer can be approximately inertial
within the "Einstein elevator" if the "elevator" falls freely with acceleration g -

GMIr' while rotating with frequency S? - GJ1C2 r'. It follows that the relevant

gravitoelectromagnetic acceleration lengths are given by c2Ig and cl S? in this

case and the restrictions discussed in the previous section would then apply to the

measurements of an observer in a gravitational field as well. These limitations

are generally expected to be important for the post-Newtonian corrections of

high order in relativistic gravitational systems.
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General relativity has found applications mostly in astronomical systems,
where Newtonian results have been extended to the relativistic domain. In par-

ticular, small post-Newtonian corrections are usually included in the equations of

motion. Suppose, for instance, that one is interested in the distance between the

members of a relativistic binary system. It follows from our considerations that

such a length - which corresponds in the Newtonian theory to the Euclidean

distance - may not be well defined. However, the resulting discrepancy could

be masked by other parameters; that is, this circumstance may be difficult to

ascertain experimentally since the comparison of data with the theory generally
involves parameters that are not independently available and whose particular
values need to be determined from the data.

Let us next consider tidal accelerations within the "Einstein elevator". For

a device of dimension  , the tidal acceleration g^ is given by the Jacobi equation
and can be estimated by  - K6, where K is a typical component of the tidal

matrix Kij = c2Rjjvpa A` Av AP A' According to the results of the previous(0) W (0) U) I

section < jic
3 1h, where IL is the mass of the device. Imagine, for instance,

such a device on a star of mass M and radius R that is undergoing "complete"
spherical gravitational collapse. In this case

,
K - GMIR3 and S < C2/ imply

that S2 < C2R3IGM. On the other hand, the requirements that p < M and

> h1pc result in

R3 >
GM h

2

h_L2 (26)C2 MC MC P)

where LP = (hGlc3)1/2 is the Planck length 10-33 CM) that is the geometric
mean of the gravitational radius GMIc2 and the Compton wavelength h1Mc
for any physical system [17]. Thus collapse to a classical point singularity is

meaningless on the basis of these considerations.

5 Wave Phenomena

Classical waves have intrinsic scales and are thus expected to be in conflict with
the hypothesis of locality; indeed, for an electromagnetic wave of (reduced) wave-

length A the expected deviation from the hypothesis of locality is expected to be
of the form XIL. More specifically, let us consider the problem of determination
of the period of an incident electromagnetic wave by an accelerated observer.
The observer needs to measure at least a few oscillations of the wave before a

reasonable determination of the period can be made; therefore, the curvature

of the observer's worldline cannot be neglected unless AIL is too small to be

observationally significant. It follows that the instantaneous Doppler and aber-
ration formulas are in general valid only in the eikonal limit AIL --- 0. The issues

involved here can be illustrated by a simple thought experiment. Let us consider

an observer rotating with uniform speed co and frequency R in the positive sense

around the origin on a circle of radius r = colQ in the (x, y)-plane. A plane
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electromagnetic wave of frequency w is incident along the z-axis and the rotat-

ing observer measures its frequency. According to the hypothesis of locality, the

observer is at each instant momentarily inertial and hence w' = yw according to

the transverse Doppler effect. This is illustrated in Figure 2. On the other hand,

Fig. 2 A thought experiment involving the measurement of the frequency of a normally
incident plane monochromatic electromagnetic wave of frequency W by a uniformly
rotating observer.

if we assume that the hypothesis of locality applies to the field measurement,

F(,,) p) F4, A' Av (27)(Co (0) 1

and the instantaneously determined electromagnetic field F(,,,) (.8) (7) is then Fou-
rier analyzed over proper time - which is definitely a nonlocal procedure
to determine its frequency content, then we find that w' = 7(w :F S?). Thus
w' - -yw(I :F AIL), where L = clS?; hence, the instantaneous Doppler result is
recovered for A -+ 0. The upper (lower) sign here refers to right (left) circularly
polarized incident wave. Apart from the Lorentz factor -y that refers to the time
dilation involved here, the result for w' has a simple physical interpretation:
The electromagnetic field rotates with frequency w (-w) about the z-axis for
an incident right (left) circularly polarized wave, so that the field rotates with

respect to the observer with frequency w - S? (-w - Q). Thus the helicity of
the radiation couples to the rotation of the observer, i.e. hw' = -y(hw - s - S?);
in fact, this is an example of the general phenomenon of spin-rotation coupling
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[18, 19, 20, 21, 22, 23, 24]. For instance, for experiments on the Earth the "non-

relativistic" Hamiltonian for a spinA particle should be supplemented by2

WSR ::: -S * 0 + S * QP7 (28)

where Q is the frequency of Earth's rotation and f2p is the gravitomagnetic
precession frequency. The second term in equation (28) illustrates the gravi-
tational Larmor theorem. It is interesting to note that hf? - 10' eV and
hQp - 10-29 eV; in fact, recent experiments [25, 26] have demonstrated the
existence of the first term in (28). Moreover, the position dependence of the

second term in (28) indicates the existence of a gravitomagnetic Stern-Gerlach
force -V(s - S?p) that is purely spin dependent and violates the universality of
free fall. For instance, neutrons in different spin states in general fall differently
in the gravitational field of a rotating mass; similarly, the gravitational deflection
of polarized light is affected by the rotation of the mass. That is, in addition to,
and about, the Einstein deflection angle A = 4GMIc2D, there is a splitting due
to the helicity-rotation coupling by a much smaller angle 6 = 4XGJ1c1D1, where
D is the impact parameter for radiation propagating normal to the rotation axis

and over a pole of the rotating mass [18, 16]. As ;klL -- 0, 6 -+ 0 and hence the
standard result for a null geodesic is recovered.

To explain all of the experimental tests of general relativity, it is sufficient
to consider all wave phenomena only in the JWKB limit. That is, geometric
44optics" is all that is required; no gravitational effect involving wave "optics"
has ever been detected thus far. An interesting opportunity for detecting such
effects would come about if the quasinormal modes (QNMs) of black holes could
be observed. The infinite set of QNMs corresponds to damped oscillations of a

black hole that come about as the black hole divests itself of the energy of the
external perturbation and returns to a stationary state; therefore, these ringing
modes of black holes appear as Aexp(-iwt) at late times far from a black hole.
Here A is the amplitude of the oscillation that depends on the strength of the

perturbation as well as the black hole response, while w = wo - iF with F > 0 is

purely a function of mass M, angular momentum J and charge Q of the black

hole, i.e. w = wj,, (M, J, Q), where j, m and n are parameters characterizing
the total angular momentum of the radiation field, its component along the z-

axis and the mode number, respectively [27]. The mode number n = 0, 1, 2,...,
generally refers to the fundamental, first excited state, etc., of the perturbed
black hole with j and m; in fact, F increases with n so that the higher excited
states are more strongly damped. The fundamental least-damped gravitational
mode with j = 2 and n = 0 for a Schwarzschild black hole is given by

w0127r ; ,- 104 (M(DIM) Hz, (29)

F-1 ;z: 6 x10-5(MIM0 ) sec, (30)

so that even this mode is rather highly damped and would therefore be very
difficult to observe. The damping problem improves by an order of magnitude
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if the black hole rotates rapidly; however, the observational difficulties would

still be considerable. The observation of such a mode would be very significant
physically since, among other things, near an oscillating black hole Cg - GMIc2

and with A = clwo, we have A/fg
- 1, so that wave "optics" can be explored in

the gravitational field of a black hole.

It is necessary to examine the justification for the local field assumption (27),
since it leads - in the thought experiment of Figure 2 - to the result that a

normally incident right circularly polarized wave with w = J? would stand com-

pletely still with respect to the observer. This circumstance is in contradiction

with expectations based on elementary notions of relativity theory [28]. In fact,
at w = J? one has AIL = 1 and it is possible to argue that the hypothesis of

locality must be violated. To this end, imagine an accelerated charged particle in

the nonrelativistic approximation. The particle radiates electromagnetic waves

with characteristic wavelength A - C; therefore, it is expected that such a parti-
cle would not be locally inertial and that (27) is violated. Indeed, the equation
of motion of the particle is given by

rnd2X 2 q2 d3X
f (31)dt2- 3 C3 dt3

The radiation reaction term - due originally to Abraham and Lorentz - ensures

that the particle is not pointwise inertial, since its position and velocity are not

sufficient to determine the state of the radiating particle.
These classical considerations must naturally extend to the quantum domain

as well, since quantum theory is based on the notion of wave-particle duality.
That is, we expect that the hypothesis of locality would be violated in the quan-
tum regime. Consider, for instance, the determination of muon lifetime by Bailey
et al. [29] involving muons (in a storage ring at CERN) undergoing centripetal

= 72V2 r 1021 - 2. Ifacceleration of g cm sec Tt', is the lifetime of the muon at

rest, then the hypothesis of locality would imply that the lifetime in the storage
ring would be T. - 7 0. In the experiment, r  L-_ 7 m, 7  i-_ 29 and time dila-

tion is verified at the level of - 10-3. On the other hand, the deviation from

the hypothesis of locality is expected to be of the form A/ C _ 10-13, where

,C = C21g -A = h/mc is the Compton wavelength of the muon and
-

1 cm is the
translational acceleration length. But the functional form of this deviation is not

specified by our general intuitive considerations. In any case, AIL is about ten

orders of magnitude below the level of experimental accuracy [29]. In fact, the

decay of the muon has been considered in this case by Straumann and Eisele by
replacing the accelerated muon by the stationary state of a muon in a Landau
level with very high quantum number [30]. It can be shown that the decay of
such a state results in

0 1 +
2
(A1,C) 2 (32)T 

-

3

so that the deviation from the hypothesis of locality is very small (- 10-25) in

tHis case but definitely nonzero.
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6 Discussion

General relativity is a consistent theory of pointlike coincidences involving clas-

sical point particles and rays of radiation. The theory is robust and can be

naturally extended to include wave phenomena ("minimal coupling"); however,
general relativity is expected to have limited significance in this regime. From a

basic standpoint, the main difficulty is the hypothesis of locality.
An accelerated observer passes through a continuous infinity of hypothetical

inertial observers; therefore, the most general linear connection between the field

measured by the accelerated observer ro (-r) and the locally measured field

F,',,8 (,r) = F(,) p) (-r) that is consistent with causality is

F,,,,O(,r) + )C,3' 6 (,T, -r') F,6 (,r') d-r. (33)
0

Here the observer is inertial for -r < 0 and the absence of the kernel IC would

be equivalent to the hypothesis of locality; moreover, if K is directly connected

with acceleration, then the deviation from the hypothesis of locality is generally
of order ;k/,C. Assuming that K is a convolution-type kernel (i.e. it depends
only on -r - -r'), it is possible to determine K uniquely based on the assumption
that no observer can ever stay at rest with respect to a basic radiation field.

This is simply a generalization of the well-known result of Lorentz invariance, so

that the motion of an electromagnetic wave would then become independent of

the observer. We extend the observer independence of wave notion to all basic

radiation fields and elevate this notion to the status of a fundamental physical
principle [28]. Writing equation (27) as P = AF, our basic assumption implies
that the resolvent kernel 1Z is given by [31]

R -

dA(-r)
A-1(0). (34)

d-r

It follows that for a scalar field (A = 1), R = 0 and hence IC = 0; therefore,
an observer can in principle stay at rest with respect to a scalar field. This is

contrary to our basic assumption, which then excludes fundamental scalar fields.
In this way, a nonlocal theory of accelerated observers has been developed that is

in agreement with all available observational data [31]. Moreover, novel inertial

effects are predicted by the nonlocal theory. For instance, let us recall the thought
experiment (cf. Figure 2) involving plane electromagnetic radiation of frequency
w normally incident on an observer rotating counterclockwise with f? < W; the

nonlocal theory predicts that the field amplitude measured by the observer is

larger by a factor of 1 + f2lw for positive helicity radiation and smaller by a

factor of 1 - f2lw for negative helicity radiation. For radio waves with A -- I cm

f?IW = A1,C 10-8.and an observer rotating at a frequency of 50 Hz, we have

Finally, it should be mentioned that no thermal ambience is encountered for

an accelerated observer on the basis of the approach adopted in this paper. This

is consistent with the absence of any experimental evidence for such a thermal
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ambience at present [20]. That is, either (27) or (33) can be used to determine the

quantum radiation field according to an accelerated observer once the quantum
field in the inertial frame is given. Indeed, the nonlocal theory has been developed
based on the assumption that no quanta are created or destroyed merely because
an observer accelerates ("quantum invariance condition").
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Boson Stars in the Centre of Galaxies?

Franz E. Schunck and Andrew R. Liddle

Astronomy Centre, University of Sussex, Falmer, Brighton BN1 9QJ, UK

Abstract. We investigate the possible gravitational redshift values for boson stars

with a self-interaction, studying a wide range of possible masses. We find a limiting
value of zli_  -_ 0.687 for stable boson star configurations. We can rule out the di-
rect observability of boson stars. X-ray spectroscopy is perhaps the most interesting
possibility.

1 Introduction

The idea of the boson star goes back to Kaup [6]. A boson star is a gravitationally
bound collection of bosonic particles, arising as a solution of the Klein-Gordon

equation coupled to general relativity. Many investigations of the possible config-
urations have been carried out; for reviews see [8, 5, 91. For non-self-interacting
bosons of mass m, the mass of a typical configuration is of order m',/m, to beP

compared with a typical neutron star mass of m3 2 which is about aP1 /Mneutron
solar mass. Here mp, is the Planck mass.

The situation is very different if the boson stars have even a very weak self-
interaction. [1] showed that the maximum mass of stable configurations is then
of order A'/2M3 I/M2, where A is the scalar field self-coupling, normally assumedP

to be of order unity. Then boson star configurations exist with mass (and radius)
similar to that of neutron stars, if the bosons, like neutrons, have a mass around
1 GeV. They can also be much heavier, should the bosons be lighter. We allow
ourselves to consider a very wide range of possibilities for the boson star mass and
radius. If boson stars exist, they provide an alternative explanation for stellar

systems in which an object is inferred to have a high mass; conventionally, a

'star' with mass greater than a few solar masses is assumed to be a black hole.
We investigate the implications of assuming that the material from which

boson stars are made interacts with neighbouring baryonic material and photons
just gravitationally, as the relation between a visible galaxy and its dark matter

halo. An example already existing in the literature is the boson-fermion star

Q2, 3]), which is made up of bosons and neutrons interacting only gravitationally.
However, while a galaxy halo can be described using Newtonian theory, boson
stars close to the maximum allowed mass are general relativistic objects. This

gives such objects a new characteristic, a gravitational redshift ([10]).
The boson star model is described by the Lagrange density of a massive com-

plex self-gravitating scalar field L = VJ__gJ [m2IR/81r + a4!P*a4iP - U(J pJ2)] /2,P

where R is the curvature scalar, g the determinant of the metric 9,4v) and
!P is a complex scalar field with a potential U. We take h = c = 1. Since

F.W. Hehl, C. Kiefer, R.J.K. Metzler (Eds.): LNP 514, pp. 285 - 288, 1998
© Springer-Verlag Berlin Heidelberg 1998
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want to have an additional global U(1) symmetry (conserved particle num-

ber), we can take the following potential U = m214i12 + AJ T,14 / 2, where m is

the scalar mass and A a dimensionless constant measuring the self-interaction

strength. For spherically symmetric solutions we use the static line element
d'S2 = exp(v(r))dt2 - exp (/-t (r))dr2- r2(dd2 + sin2 V dW2) .

The most general
scalar field ansatz consistent with this metric is !P(r, t) = P(r) exp(-iwt), where

w is the frequency.

2 Gravitational redshift and detectability of boson stars

The maximum possible redshift for a given configuration is obtained if the
emitter is exactly at the center Rint = 0. The receiver is always practically
at infinity. For all other redshifts in between, we define the redshift function
1 + zg (x) =_ exp (- v(x) /2), where x = wr. A boson star with the maximum mass

gives the highest value one can obtain from stable configurations (unstable con-

figurations can yield very high redshift values) ([7]). We find that with increasing
self-interaction values A := Am2 1/47rM2 also the maximal redshift value growsP

[10]. For A -+ oo, we find the asymptotic value zlim  -_- 0.687.

The mass M of a boson star composed of non-self-interacting particles is

inversely proportional to m, while the mass of a self-interacting boson star is

proportional to VA/m2; see [1]. Taking A - 1, then for small m (to be precise,
provided A > 1) the self-interacting star is much more massive. For example,
if we want to get a boson star with a mass of order 1033g (a solar mass), then

we need m - 10-10 eV for A = 0, or m CC A1/4 GeV if A > 10-38 (we see

that the self-coupling has to be extraordinarily tiny to be negligible). In this

example, the scalar particle has a mass comparable to a neutron, leading to a

boson star with the dimensions of a neutron star. If we reduce the scalar mass

1039,Ffurther, to m - 1 MeV, then we find M -
, A g and R - 106 v/A km; this

radius is comparable to that of the sun, but encloses 106 solar masses. These

parameters are reminiscent of supermassive black holes, for example as in Active
Galactic Nuclei;; the mass-radius relation is effectively fixed just by the objects
being relativistic. In all cases, the density of the boson stars makes their direct
detection as difficult as in the case of black holes; in particular, they cannot be
resolved in any waveband, cf. [10].

However, even if boson stars cannot be directly resolved, their influence might
still be visible if material in their vicinity is sufficiently luminous. It is necessary
to find a certain amount of luminous matter within the gravitational potential of
the boson star. This could, for example, be HI gas clouds as seen in galaxies. One
might also expect accretion disks about boson stars, though there the luminosity
could be dominated by regions outside the gravitational potential and the boson
star would be indistinguishable from a black hole.

The most promising technique for observing supermassive boson stars is to

consider a wave-band where they might be extremely luminous, e.g. X-rays. A
very massive boson star, say 106 M(D is likely to form an accretion disk, and since
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its exterior solution is Schwarzschild it is likely to look very similar to an AGN

with a black hole at'the center. In X-rays, it has been claimed by [41 that using
ASCA data they have probed to within 1.5 Schwarzschild radii. A boson star

configuration provides a non-singular solution where emission can occur from

arbitrarily close to the center. The signature they use is a redshifted wing of the

Iron K-line. If such techniques have their validity confirmed, it may ultimately
be possible to use X-ray spectroscopy to map out the shape of the gravitational
potential close to the event horizon or boson star.

The rotation curves about a boson star Q10]) show an increase up to a max-

imum with more than one-third of the velocity of light followed by a Keplerian
decrease. If boson stars exist, then such enormous rotation velocities are not nec-

essarily signatures of black holes. In [111, a model with massless bosonic. particles
was applied to fit rotation curve data of spiral and dwarf galaxies.
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Abstract. Models of black holes in (1 + l)-dimensions provide a theoretical labora-

tory for the study of semi-classical effects of realistic black holes in Einstein's theory.
Important examples of two-dimensional models are given by string theory motivated

dilaton gravity, by ordinary general relativity in the case of spherical symmetry, and by
Poincar6 gauge gravity in two spacetime dimensions. In this paper, we present an in-

troductory overview of the exact solutions of two-dimensional classical Poincar6 gauge

gravity (PGG). A general method is described with the help of which the gravita-
tional field equations are solved for an arbitrary Lagrangian. The specific choice of a

torsion-related coframe plays a central role in this approach. Complete integrability
of the general PGG model is demonstrated in vacuum, and the structure of the black

hole type solutions of the quadratic models with and without matter is analyzed in

detail. Finally, the integrability of the general dilaton gravity model is established by
recasting it into an effective PGG model.

1 Introduction

Standard General Relativity (GR) is trivial in two dimensions. Nevertheless,
two-dimensional (2D) models of gravity which differ from GR have recently
received considerable attention [2]-[351. The interest in 2D gravity is strongly
supported by the fact that usual four-dimensional GR, in the case of spherical
symmetry, is described by an effective 2D gravitational model of the dilaton

type. Such a dimensional reduction provides a technical tool for the study of

long standing problems in black hole physics, including an understanding of the

final state of a black hole with an account of the back reaction of the quan-
tum evaporation process, see [9, 5, 35]. On the other hand, lower-dimensional

black hole physics is discussed in the context of string theory motivated dila-

ton gravity (see, e.g., [9, 15, 18, 19, 20, 28, 30, 27, 34]) and in the framework

of PGG ("Poincar6 gauge gravity") [1]-[8],[29, 31, 33],[37]-[41]. The approaches
[l]-[8] are attempts to construct string theories with a dynamical geometry [10]-
[17],[331. In this paper we present an overview of the black hole solutions in

classical two-dimensional PGG. At the same time, 2D gravity is of interest in

itself as a theoretical laboratory which offers a simple way to study difficult

non-perturbative quantization problems [13].
In the studies of both, classical and quantized 2D models, it is of crucial

importance to find exact solutions of the field equations. Here we describe an

elegant method developed in [29]-[41] with the help of which one can explicitly
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integrate the field equations of classical PGG with and without matter sources.

The central point is to use a specific coframe built up from the one-form of the

torsion trace and its Hodge dual. The early proofs of the integrability of the

quadratic PGG models in vacuum were based on the component approach and

relied on specific gauge choices, like the conformal or the light-cone gauge [10]-
[26]. The coupling to gauge, scalar, and spinor matter fields was shown to destroy
the integrability in general. A peculiar but common feature of the standard

matter sources (gauge, scalar, and spinor fields) in two dimensions is that for all

of them the spin current vanishes. Thus, quite generally, the Lorentz connection

is explicitly decoupled from 2D matter. Hence the material energy-momentum
current is symmetric and covariantly conserved with respect to the Riemannian

connection. The absence of the spin-connection coupling considerably facilitates
the integration of the field equations.

XO-axis

W

F "-*7-

Xl-axis

W

Fig. 1 Two-dimensional spacetime: A 0-form (scalar) 4i has one component, a 1-form
T, two components, and a 2-form u) one component. A vector v has two components, a

bivector w one component.

The structure of the paper is as follows: Sec. 2 contains an introduction to 2D

Riemann-Cartan geometry. In Secs. 3 and 4, we demonstrate the integrability of

PGG with an arbitrary gravitational Lagrangian and prove the consistency of our
method in general. As a particular application, a quadratic model with an action

containing squares of torsion and curvature is discussed in vacuum (Sec. 5) and in

the presence of conformally invariant matter (Sec. 6). The properties of the exact

solutions of black hole type are described in detail. Finally, in Sec. 7, we apply
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xO-axis

T'

x1-axis

Fig. 2 Two-dimensional Riemann-Cartan spacetime: Coframe 0" (2 components),
connection 1-13 = -FO' (2 components), torsion T' (2 components), curvature

R'13 = -R13' (1 component). Here, 0' V'} is a natural coframe, i.e., L96 = dxO,
iV = dx'.

the general method to the (purely Riemannian) string theory motivated dilaton

gravity models by rewriting them in form of an effective Poincar6-Brans-Dicke

theory. The general solution of an arbitrary two-dimensional dilation gravity
model is obtained in explicit form.

2 Two-dimensional Riemann-Cartan spacetime

The Riemann-Cartan geometry has rather remarkable properties in two dimen-

sions, see Fig.l.
In the PGG approach, the orthonormal coframe one-form ?9' and the linear

connection one-form 1`13 are considered to be the translational and the Lorentz

gauge potentials of the gravitational field, respectively. The corresponding field

strengths are given by the torsion two-form T' := DO' and the curvature two-

form R',8 := dF1,8 - 1"- A FO, see Fig.2. The frame e, = e', i9i is dual to the

coframe 03 = ejO dxj, i.e., e,],00 = e',,, eiO - 6 . The spacetime manifold M is

equipped with a metric

g = gij dx' 0 dx3. (2.1)

Thus its coframe components satisfy

o,,3 = e',, e3 0 9ij , (o,,O) = diag(- 1, + 1). (2.2)
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In an orthonormal frame, the curvature, like the connection, is antisymmetric in

a and

Table I Gauge field strengths, matter currents, and 27-basis

Type Components
Object Valuedness p-form n-dimensions

-

n_=_ 2

T' vector 2 n7(n - 1)/2 2

R'13 bivector 2 n2(n - 1)2 /4 1

ZT. vector n - 1 n2 4

T.0 bivector n- 1 n
2 (n - 1)/2 2

77. vector n - 1 n2 4

For a 2D Riemann-Cartan space, as we can take from Table 1, we have two

translation generators and one rotation generator. This allows us to introduce a

Lie (or right) duality operation, that is, a duality with respect to the Lie-algebra
indices, which maps a vector into a covector, and vice versa:

V)* := 'qC"a V , 7pa = '00 0* (2-3)a 0 *

Here the completely antisymmetric tensor is defined by q(,,3 VAJ-deto,,, 1,E,,3,
where E,,3 is the Levi-Civita symbol normalized to e6i = +1 (a circumflex on

top of a number identifies the number as an anholonomic or frame index). For
,00 =,0,3 we get % := *-0,, = t9c*,,, where * denotes the Hodge (or left) dual. Using
the Lie (or right) duality in two dimensions, we can appreciably compactify the

notation, see Table 2.

Local Lorentz transformations are defined by the 2 x 2 matrices A01(x) E

SO(i,i),

A )3 cosh w + %13 sinh w. (2.4)

Table 2 2D geometrical objects

n=2 Valuedness p-form Components
1'* := (1/2) 77,,3 r,,O scalar 1 2

t' := *T' vector 0 2

T:= e,,,JTc' scalar 1 2

t2 := 0"')3 t. t,3 scalar 0 1

R* = dr* scalar 2 1

R := e,,,Je,3JR'0 scalar 0 1
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The gauge transformations of the basic gravitational field variables read

79"' = (A- 1)0' VO = ?9' cosh w - q' sinh w, (2.5)
1""'13 = &- Fy6(A-1)60 - A,,'Yd(A-1),y13 = r,,,3 +%Odw, (2.6)

or r*' = P - dw. (2.7)

The curvature 2-form has only one irreducible component, and it can be

expressed in terms of the curvature scalar R := e,Je,3JR',8:

R'13 = -

I
R V' A V13- (2-8)

2

In two dimensions torsion is irreducible and reduces to its vector piece

T' = -to,q, (2.9)

where the vector-valued torsion zero-form t' is defined via the Hodge dual

t" := *T. (2.10)

When the torsion square is not identically zero, i.e. t2 := to, ta $ 0, we call
the corresponding manifold M a non-degenerate Riemann-Cartan spacetime. In

this case, using the scalar-valued torsion one-form T := e,,]T", we can write a

coframe as

1
(Tq"13 to + *T t) (T t*' + *T t) . (2.11)t2 t2

Thus, the torsion one-form T and its dual *T specify a coframe with respect
to which one can expand all the 2D geometrical objects. When t2  4 0, this
coframe is non-degenerate, hence the terminology of a non-degenerate Riemann-
Cartan space. In this case, the volume two-form can be calculated, in the non-

degenerate case, as an exterior square of the torsion one-form T:

77:=
1
qOOd" A,013

-

1
*T A T. (2.12)

2 t2

Defining a coframe of a 2D Riemann-Cartan spacetime in terms of the torsion

one-form turns out to be extremely convenient, and, in fact, underlies the inte-

grability of the 2D gravity models with and without matter.

3 The field equations of PGG: invariant formulation

The total action of the interacting matter field T1 and the PGG fields in two

dimensions reads

W f [L(Va, T1, DTf) + V(t9', Ta, R'13)], (3-1)
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where the matter Lagrangian two-form L will be specified later.

One can prove that torsion and curvature can enter a general gravitational
Lagrangian V only in form of the scalars t2 := o,,3 t'0 and R. The gravitational
Lagrangian density is denoted by V := *V. Then the general gauge invariant

PGG Lagrangian reads

V(V', T", R'O) = V (,da, t2
, R) = _V(t2 R),q. (3.2)

The partial derivatives

P :- -2
'9V

2
 ,qv

(3.3)( jqt2  M)
i.e. the generalized gravitational field momenta ('excitations'), define two func-

tions P = p(t2, R) and r, = r, (t2 , R) which are assumed to be smooth and

nontrivial: P 0 0, r, 0 0.

x1-axis

Fig. 3 Energy-momentum current Z' (4 components) and spin current r",3 (2 compo-

nents) in two-dimensional spacetime.

The variational derivatives

6L 6L
Z" :=

&9C,I Ir,,8 :-wao 1 (3.4)

yield the energy-momentum and the spin one-forms of matter, respectively,
see Fig.3. Using the right duality, one straightforwardly replaces the bivector-

valued spin by the scalar-valued one-form -r* := Similarly, instead of
2

x0-axis
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using the vector-valued energy-momentum one-form Z, it turns out to be more

convenient to introduce two scalar-valued one-forms

S : -_ to, ZC" S* := tc"q"OZO = t*C"E,. (3-5)

Analogously to (2.11), which expresses the coframe in terms of T and *T, one

can rewrite the energy-momentum current in terms of S and S*:

-

1 1
Z" - (ta S + 77CX,30 S*) = - (t, S + t* S*) . (3-6)

t2 t2 a

If we use the Hodge star, we find by straightforward algebra

S*
+ *S = *(0' A Z,) *T - *(if A Z,) T. (3.7)

Let us recall that 0' A Z, describes the trace of the energy-momentum whereas

,q' A Z,, represents its antisymmetric part. The latter is related to the spin via

the second Noether identity:

2 d-r* - q' A Z, (3.8)

The general field equations of PGG arise from independently varying (3.1)
with respect to the coframe d' and the connection F'O. Remarkably, these

equations can be rewritten in a completely coordinate and gauge invariant form

d(p2 t2) = 2P( T + S), (3.9)

d(P *T) = (p t2 - 2  ),q +,d' A Z, (3.10)
dr. = -P T + 2-r*, (3-11)

Pt2 (r* + du) =  *T + S*, (3-12)

where

V + Pt2 R (3-13)
2

is the so-called modified Lagrangian function and

t2du : = q,,3 t' dtO. (3-14)

The term du in (3.12) is physically irrelevant, since a 2D Lorentz transformation

can create such an Abelian shift, see (2.7). In (3.9)-(3-12), the source terms of

the matter field Tf are represented by S and S*, by the energy-momentum trace

t9l A Z, and by the spin -r*. We marked them in the field equations by letters

in boldface. Besides the gravitational field equations, we have the matter field

equation. For matter described by a p-form field T, it reads

JL OL 9L
(-I)PD- - 0. (3-15)

6T1 aT, aDT1
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As we have seen, the system (3-9) - (3.12) involves the energy-momentum one-

forms S and S* as sources. They satisfy the following equations which can be

derived from the Noether identities:

d(PS) -_ T A P(S - RT*) +
2
 d-r (3-16)

d(PS*) = T A P(S* + R *-T*) +
2
S A S* + ( _ pt2 ) 'Oa A Zc, - (3-17)

t2

In 2D, the specific feature of standard matter (scalar, spinor, Abelian and

non-Abelian gauge fields) is that the spin current is zero:

-r,,a = 0 (standard matter). (3-18)

Thus only the canonical energy-momentum one-form Z, enters the gravitational
field equations as a source. Moreover, in view of (3.8), it becomes symmetric:
77' A Z,,,, = 0. In this paper, we limit ourselves to the discussion of massless,
conformally invariant matter models. Then we have

t9c' A Z, = 0 (massless, conformally invariant matter), (3.19)

and the corresponding terms drop out from the field equation (3.10) and the

Noether identity (3-17). Consequently, only S is left as a source. From now on,

we will specialize to this physically most interesting case obeying (3.18) and

(3-19). Under these conditions, (3.7) simply reduces to

S* + *S = 0. (3.20)

Accordingly, the complete system (3.9)-(3-12) and (3.16)-(3.17), with (3.18)
and (3-19), should be jointly solved with the matter field equation (3.15).

Consistency check of the invariant formulation

As it is clearly suggested by the field equation (3.11), the function K of the

Riemann-Cartan curvature R (and, in general, of t2) can be conveniently treated

as one of the local coordinates on a two-dimensional manifold M. However, one

has always to check the consistency of the scheme by explicitly calculating the

curvature from the connection which itself is obtained from the field equations.
This was done for the vacuum solutions of the general PGG model in [29] and for

non-vacuum solutions of the quadratic models in [31]. Here we will demonstrate

consistency in general, for arbitrary matter sources and arbitrary gravitational
Lagrangian. We consider the non-trivial non-degenerate case with t2 0 0.

Eq.(3.12) yields the general solution for the Lorentz connection. Starting
from the definitions (3.3) and using (3-11), it is straightforward to compute the

differential of the modified Lagrangian:

d  -

1 1
d(p2t2) +RPT -R-r*. (3.21)

2 (P
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With the help of this relation and eqs. (3.9), (3-10), (3-17), (3.7), one finds

d[fl *T + S*)] =
1
- d(p2t2) A [P( *T + S*)] +

1
Rp2TA*T. (3-22)

p2 t2 2

The consistency proof is completed by taking the exterior differential of the left-

and right-hand sides of equation (3.12). With the help of (3.21) and (3.22), this

yields

dr* Rq.
2

4 Exact solutions of PGG with arbitrary gravitational
Lagrangian

The two cases of two-dimensional PGG should be treated separately, the de-

generate case with t2
- 0 and the non-degenerate one with t2  4 0. We will

formulate our answers for matter sources obeying (3.18) and (3.19).

4.1 Degenerate torsion solutions

If t2 = 0, the torsion one-form is either self- or anti-self-dual,

T *T. (4.1)

Then (3.10) and (3.11) yield V = 0. This in turn, with (3.13) and (3.3), yields

av
f(R) := V - R

M
= 0. (4-2)

For a given Lagrangian V = V(R), the t2-dependence drops out because of the

degeneracy, the solutions of f (R) = 0 determine some R = R1, R = R21 . . .

Therefore the curvature is constant, R = const and, by implication, also the

R-dependent Lorentz field momentum, r, = const. Then, from (3.11), one finds

T = 0. Finally, an analysis of the matter field equation and of the Noether

identities shows that only trivial matter configurations are allowed: A constant

field in the case of a zero-form T-1, e.g..

Summarizing, we see that the degenerate solutions of PGG reduce to the

torsionless de Sitter geometry,

T' = 0, R = const, T1 = const, (4-3)

where the constant values of the curvature are roots of equation (4.2). Inciden-

tally, the same turns out also to be true for some conformally non-invariant

matter, for a massive scalar field with arbitrary self-interaction, e.g.. In the rest

of the paper we will mainly consider the non-degenerate case with t2   0.
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4.2 Non-degenerate vacuum solutions

Let us now specialize to the vacuum field equations. Accordingly, in (3.9)-(3.11)
we have to put S = 0, 0' A Z, = 0, and -r* = 0. The formal general solution is

obtained as follows: Let us introduce a coordinate system (n, A) which is related

to the torsion 1-form basis (T, *T) via

PT = -dr,, P *T = BdA, (4.4)

with some function B(r,, A). Consequently, the volume 2-form is given by

B
dr, A dA, (4-5)p2t2,

cf. (2.12). The first equation in (4.4) is simply the field equations (3.11).
Substitution of the ansatz (4.4) into (3.9) and (3.10) results in

a
(p2t2) = -2 , a

(p2t2) 0, (4-6)
(9 r, 5_'N

InB = ln(p2t2) + (4.7)
P

Formal integration of (4.7) yields the solution

B = Bo(A) p2 t2 exp
d

(4-8)f P

where Bo (A) is an arbitrary function of A only.
Provided the gravitational Lagrangian V, and hence P, is smooth, there

always exists a solution of the first order ordinary differential equations (4.6).
This describes p2 t2 as a function of r, and A, thus completing our formal demon-
stration of the integrability of the general two-dimensional vacuum PGG. The

complete non-degenerate vacuum solution is evidently of the black hole type
with the metric

9
dr.2

+ p2t2 exp 2
dr.

dA2. (4.9)p2t2 f P

Here, without restricting generality, we put BO = 1. Torsion and curvature for
our solution are obtained by inverting the relations P = p(t2, R), K = r.(t2, R) >

t2 = t2 (P, r,), R = R(P, r,) -
For the solution to be unique, one must assume the

relevant Hessian ( a2V 92 V ) to be non-degenerate. It is straightforward toat2at OROR
derive from (3.12) the curvature scalar of the general solution:

PY (9 B a
2 2)R -

-- -j -(p t (4.10)
B o9r, ( p2t2 K

The position of the horizon(s) is evidently determined by the zeros of the
metric coefficient g,\,x = p2t2 exp (2 f drIP). It is impossible to say more without

explicitly specializing the gravitational Lagrangian. An important particular case

is represented by quadratic PGG which will be discussed in the next two sections.
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5 Exact vacuum solutions of PGG with quadratic
gravitational Lagrangian

Let us now analyze two-dimensional PGG with a gravitational Lagranglan qua-
dratic in torsion and curvature,

V
a

T,, *T' +
I
R'0q,8 +

b
R,,,,8 *R'O - Aq. (5-1)

2 2 2

Here a, b, and A are the coupling constants. Using (5. 1) in (3.3), we find:

P - a, r, = bR - 1. (5.2)

The modified Lagrangian function reads

a
t2 _

b
R2+ A. (5-3)

2 4

We will concentrate here on vacuum solutions. The general scheme for an ar-

bitrary Lagrangian V was given in the previous section. The degenerate solutions

(4-3) are de Sitter spacetimes:

A
T' = 0, R - RdSi RdS := 2

b
* (5.4)

b

Also the non-degenerate solutions can be easily obtained. Substituting (5.2)-(5.3)
into (4.6), we explicitly find for the scalar torsion square

_t2= 2Mo e
-bR/a

_

b
R2+ R +

2A
-

a

2a a b

The integration constant Mo has the physical meaning of the mass of a point-
like source. This can be derived from the existence of the timelike Killing vector

field Y), which yields the conserved energy-momentum 1-form

6RC := (a-Ta = -e
bR/a 1

d(t2) + 1 dr, (5-6)22 a

This I-form is strongly conserved, i.e. dERC - 0 even when the field equations
are not fulfilled. One can verify that

ERC = dM, M :_
_e

bR/a
t2 -

b
R2+ R +

2A
-

a

(5-7)
2 2a a b)

When the vacuum field equations are satisfied, eRC = 0, and thus M Mo.
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Black hole structure of non-degenerate spacetimes

The degenerate solutions are torsionless de Sitter spacetimes with constant Rie-
mannian curvature RdS , see (5.4). The properties of the non-degenerate solutions
are obviously defined by the values of the coupling constants (a, b, A) and by the
value of the first integral Mo. Let us denote

M
eTbRdS/a a

RdS (5.8)
2 ( b

We recognize that always M_ < M+, equality is achieved only for vanishing
cosmological constant: M_ = M+ = a/(2b) for RdS = A = 0. For sufficiently
large A, namely when A > a2/(4b) (or, equivalently, RdS > a/b) one finds

negative M-, otherwise M > 0. The special case A = a2/ (4b) in a de Sitter

gauge gravity model was discussed in [36, 38] (then RdS = a/b and M_ = 0).
As we already know, the spacetime metric is given by the line element (4.9)

with (5.2) and (5.5) inserted. Clearly, instead of r., we can use the scalar curvature
R as a spatial coordinate. Another convenient choice is a "radial" coordinate

r := exp
b
R (5.9)

a

The meaning of the quantities (5.8) becomes clear when we analyze the metric
coefficient

gx,x = -2MO ebR/a + e2bR/a
b
R2

- R -

2A
+

a

(5-10)
2a a b

Its zeros define the positions of the horizons Rh,

gA,\(Rh) = 0- (5-11)

At R = -oo, we have gxx = 0. However, this point is not a horizon but a true

singularity with infinite curvature. This corresponds to r = 0 which one can

consider as the position of a central point-like source mass. Such a singularity
is, in general, hidden by the horizons.

The position, the number, and the type of horizons are completely determined
by the total mass Mo. We can distinguish five qualitatively different configura-
tions:

(i) Mo < M_: one horizon at

Rh < -RdS. (5-12)

(ii) Mo = M_: two horizons at

Rhi < -RdSi Rh2 = RdS. (5-13)
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-4 -2 0 2
x

Fig. 4 Metric coefficient g(x) g),.>,1RdS as a function of x RlRdS: Moving from

upper to lower curves corresponds to the cases (i)-(v), respectively.

(iii) M_ < Mo < M+: three regular horizons at

Rhj < -RdS < Rh2 < RdS) Rh, > RdS- (5.14)

(iv) Mo = M+: two horizons at

Rhj = -RdS, Rh2 > RdS (5-15)

(v) Mo > M+: one regular horizon at

Rh > RdS. (5-16)

Here we have assumed Mo > 0 which is physically reasonable. For zero or nega-
tive values of M0, the smallest horizons disappear for the cases (i), (ii), and (iii).

2

In Fig. 4, the function (5-10) is depicted for A and positive values of Mo.16b

The geometry of these solutions is obtained by an appropriate gluing of a

charged black hole to a de Sitter spacetime. In (iii), the largest R, namely Rh" I

describes the cosmological event horizon which hides de Sitter singularity at

R - oo (r = oo) from an observer at R < Rh, -
Other horizons, with Rhl,2, de-

scribe the charged black hole. The cases (ii) and (iv) correspond to the extremal

Reissner-Nordstr6m black hole.
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The Hawking temperature of the black holes is related to their surface gravity.
The latter can be straightforwardly calculated from the knowledge of the timelike

Killing vector a),:

-

I
(V i (j) (V

b
2 (Rh 2

- RdS2 (5-17)
2

R= Rh
2a

The temperature vanishes for the extremal black hole configurations (ii) and

(iv).

It seems worthwhile to mention that gxx reaches a local maximum at Rh,
[case (iv)], and a local minimum at Rh2 [case (ii)], when M-  4 M+. For M- =

M+, the three cases (ii), (iii), and (iv) degenerate to a configuration with a

horizon at Rhj = Rh2 = 0, which is an inflexion point of gx),. The qualitative
behavior is given in Fig. 5 for positive values of Mo.

0.75

0.5

0.25

0
-
-

- -
-

-=
--

--
--

- - I -

-0.25

-0.5

-0.75

-4 -2 0 2
Y

Fig. 5 The case RdS = A 0: The metric coefficient g(y) gxxb/a is plotted as a

function of y := Rb/a. Upper, central, and lower curves describe the cases (i), (ii)-(iv),
and (v), respectively.
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6 Quadratic PGG with massless matter

6.1 Massless fermions

Dirac spinors in two dimensions have two (complex) components,

- 1) - (6-1)o (002
The spinor space at each point of the spacetime manifold is related to the tangent
space at this point via the spin-tensor objects. In the approach with Clifford-

algebra valued forms, the central object is the Dirac one-form

(6.2)

which satisfies

7 0 'Y = g' A -2^ 577. (6-3)

The 75 matrix is implicitly defined by

*'Y ::::: 75 7. (6.4)

We are using the following explicit realization of the Dirac one-form:

7
0

 

400 -191) (6.5)
(190 + t9l) 0

a,3The Dirac matrices 7' satisfy the usual identity -y'70 + O,cl = 2g
The gauge and coordinate invariant Lagrangian two-form for the massless

Dirac spinor field can be written in the form

L = -(o 7 A dip + do A -y 0). (6-6)
2

It is well known that in two dimensions there is no interaction of spinors with

the Lorentz connection, and the above Lagrangian contains ordinary exterior

differentials and not the covariant ones. Nevertheless, the theory is explicitly
invariant under local Lorentz rotations.

The (Dirac) field equation is obtained from the variation of L with respect
to o and reads

7 A do - 1(d-y)o = 0. (6.7)
2

The degenerate case was described in Sec. 4.1. Here we assume that t' 0 0. Thus

the one-forms T and *T can be treated as the coframe basis in a two-dimensional
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Riemann-Cartan spacetime. In the explicitly gauge invariant approach, it is con-

venient to define, instead of the original spinor (6.1), two complex (four real)
Lorentz invariant functions:

 01 = U1 + iU2 := V(t6 + ti) V11,  02 = V1 + iV2 (0 - ti)'02- (6-8)

The Dirac equation (6.7) yields for the real variables UA, VA, A = 1, 2 (using
(2.11))

d [UAUB (T - *T)] = 0, d [VAVB (T + *T)l = 0. (6-9)
t2 t2

This can be immediately integrated. In particular, the Poincar6 lemma (locally)
guarantees the existence of two real functions. We denote them by x and y, such

that

I W, 12
(T - *T) = dx,

I  P2 12
(T + *T) = dy. (6-10)

t2 t2

This evidently provides local null coordinates (x, y) for the spacetime manifold.

Introducing the phases of the complex spinor components explicitly,

ia
W, = JW,le , W2 = JW21e

we find, using (6.9), that these phases depend only on one of the above variables,

a = a(x), 0 = 0(y). (6-12)

This construction gives the general exact solution of the massless Dirac equation
in an arbitrary two-dimensional Riemann-Cartan spacetime.

The energy-momentum one-form is straightforwardly obtained,

S AI(T - *T) + A2(T + *T), (6.13)

where we denoted

A,
da JW11'

A2
0 JW2 14

(6.14)
dx t2 dy t2

In (6-13), we have S* S, well in accordance with (3.20).

6.2 Massless bosons

Let us now turn to a gravitationally coupled massless scalar field with the

Lagrangian two-form

L do A * do. (6-15)
2
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Variation with respect to 0 yields the Klein-Gordon equation:

*d *do = 0. (6-16)

In non-degenerate spacetimes with 0  : 0, we can use the torsion coframe

basis and can write, in the most general case,

do = 4i, (T - *T) + !P2 (T + *T), (6-17)

with some functions C,2- We substitute (6.17) into the Klein-Gordon equation
(6.16). Then it turns out that locally there exists such a scalar function z that

4i,(T - *T) - 4 2(T + *T) = dz. (6.18)

This describes a general solution of the Klein-Gordon equation.
For the energy-momentum one-form S we get, similarly to (6-13),

S = Aj(T - *T) + A2(T + *T), (6-19)

where now

_t2,p2 _t2 p2A, 1, A2 2' (6.20)

6.3 Chiral solutions

Both, the massless Dirac equation and the massless Klein-Gordon equation,
admit chiral solutions. For fermions chirality means that only one component
of the spinor field is nontrivial. For bosons chirality can be formulated in terms

of self- or anti-self-duality of the "velocity" one-form do. In both cases, the
field equations describe right- or left-moving configurations. In this section we

describe the corresponding gravitational field for the quadratic PGG model (5. 1).
Let us assume that  02 = 02 = 0 for the fermion and  P2 = 0 for the boson

field. Then A2 = 0 in (6.14) as well as in (6.20). Hence the energy-momentum
one-form S is anti-self-dual S* = S. These are chiral configurations.

The integrals (6.10) and (6.18),

T - *T -

t
dx (spinor), T - *T dz (scalar), (6.21)

 O 1
2

together with the equations (3.11), (5.2), suggest a natural interpretation of the

variables R and x (or R and z, respectively,) as two local spacetime coordinates.

Clearly, x and z are different in each case, but we can unify the two problems
without risk of confusion. For the torsion coframe the equations (6.21) and (3.11)
explicitly yield

*T bdR + Bdx T
b
dR, (6.22)

a a
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for the vacuum case, see (4.4). Hence the volume two-form reads

I
*TAT=

bB
dx A dR, (6.23)

t2 at2

and the spacetime metric is given by

9 =
1

Bdx + bdR b
dR2 (6-24)

t2 a a2
J

Here we use the unifying notation

B =

t2
(6.25)

1 01 12

for fermions, while for bosons this function relates the two coordinate systems
via dz = 4ij B dx.

The spacetime geometry is completely described when one solves the field

equations (3.9)-(3.11), (3.16)-(3-17), thus finding the functions t2 and B explic-
itly. By means of (6-13) and (6.19), the energy-momentum one-form turns out

to be

S = Adx, (6.26)

where

A:= _ I  01 12
dci

(spinor), A : = _t2Rp2
1 (scalar). (6.27)

dx

Substituting (6.26), (6.22) into (3-9)-(3.1 1) and (3.16), one finds

&2 2b-
- V,

19t2 2
A, (6.28)

2OR a C9x a

1 o9lnB 1
-+

2 -

2VF2 2
= 01 (6.29)

ab aR t t

aA
-

b
+ -A = 0. (6-30)

(9R a

The equation (3.17) is redundant. This can be compared with the vacuum case

(4-6),(4-7).
The system (6.28)-(6.30) is solved by

bR/aA = f (x) e- (6-31)
B = Bo(x) t2 ebR/a (6-32)

_t2
= 2 M(x) e-bR/a _

b
R2+ R +

2A
-

a
(6-33)

2a a V



15. Black Holes in Two Dimensions 307

where

M(x) -1 f f (x)dx, (6.34)
a

with the arbitrary functions f (x) and Bo (x). Without loss of generality we can

put B0 = I since a redefinition of x is always possible. For completeness, let us

write down the Lorentz connection. Inserting (6.3l)-(6.33) into (3.12), we find

r* = dii +
ebRIa

R - a) dx, (6-35)
2 b

where ii is a pure gauge contribution.

The gravitational field defined by (6.3l)-(6.33) has the same form for chiral
fermionic and bosonic sources. However, the function f (x) is different for each

particular physical source.

For fermions combining (6.32), (6.25), (6.31), and (6.27), we find

 Pi 12 =e-bR/a
I f (X) - -

dce
(6-36)dx'

Hence the solution for the chiral fermion field, in terms of its invariant complex
component, reads

 pj = exp -

b
R + ia(x) (6-37)

2a

whereas the metric is described by (6.24) with B as specified in (6.32) and

M(X) =
a

a
+ M0, (6-38)

where Mo is an arbitrary integration constant.

For bosons, combining (6.3l)-(6.32) with (6.27) and (6-17), one finds

f (x) = -( P,B)2 = _

do 2

(6-39)
dx ) '

and the scalar field O(x) remains an arbitrary function of x.

The physical meaning of the solutions obtained is clear. In Sec. 5 it was

shown that the structure of a static black hole in vacuum is determined by
the value of the total mass Mo entering the torsion square (5.5). The massless
chiral (fermionic and bosonic) matter contributes a variable "mass" M(x) to the
torsion square (6.33). As a result, the black hole in general becomes non-static

(6.24).
One can illustrate this process of a restructuring of a black hole by matter

falling into it [9, 41]. Let us consider f (x) = _M S (X aXQ) -
In view of (6.26)

and (6.31), this function describes a point-like "impulse" of matter: the field
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energy is zero everywhere except for a single moving point (recall that x is a null

coordinate). Then, for (6-34), one obtains

M(X) = MO + MO(X - X0)- (6.40)

In the region x < x0 we have a static black hole with mass M0, whereas for
x > x0 its mass increases to Mo + m.

6.4 Conformally non-invariant matter

The above results are restricted to the chiral case and the conformally invari-
ant massless matter sources. Some remarks are necessary for the more general
cases. The non-chiral solutions were obtained in [31] for fermionic and in [33]
for bosonic matter. In general, the resulting system cannot be integrated an-

alytically, and a numeric analysis is needed. It is possible, though, to obtain
exact analytic solutions for certain models with a complicated matter content:

a nonlinear spinor field interacting with scalars, e.g., see the discussion of the
instanton type solutions in [2]-[4].

The lack of conformal invariance does not always lead to serious difficulties.
Let us consider Yang-Mills theory, for example, with an arbitrary in general
non-Abelian gauge group. The dynamical variable is the gauge potential or,
equivalently, the Lie algebra-valued connection one-form AB. The Yang-Mills
Lagrangian is constructed from the corresponding gauge field strength two-form
FB:

Lym FB A *FB. (6.41)
2

The energy-momentum current attached to (6.41) reads

Z, :=: e,]Lym + (e,]FB) A *FB = _

1
f2 71C'' (6.42)

2

where f2 fBfB, fB = *FB. As in the previous cases, the spin current van-

ishes, -r,,o 0, since the Lorentz connection does not couple to the Yang-Mills
potential.

Observe that the energy-momentum trace, in contrast to four dimensions,
does not vanish:

,da A _r
Ce
= _f2?7 : 0. (6.43)

The results described in See. 3 refer only to the conformally invariant case. Thus
one needs a proper generalization for the case (6.43). Quite fortunately, the
situation is greatly simplified due to the constancy of f2 . Although, of course,
the Lie algebra-valued scalar field fA is not constant in view of the nonlinear
nature of the Yang-Mills equations

D * FA = dfA + CABcAB fC = 0, (6.44)
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obviously its square is conserved: f2 = const.

As a result, the gravitational field equations (3.9)-(3-11) are modified by a

following simple shift of the cosmological constant:

A A+
1
f2 (6.45)

2

In particular, the complete integrability of the vacuum system is not disturbed

by Yang-Mills matter, and one again recovers the static black hole solutions

described in Sec. 5.

7 Black hole solution for general dilaton gravity

In this section we demonstrate that our method also successfully works in the

string motivated dilaton models, cf. [9, 5, 28, 30, 27, 18, 19, 34, 35].
Let us denote the purely Riemannian curvature scalar by a tilde: k In gen-

eral, the same notation is used for all geometrical objects and operations which

are defined by the torsion-free Riemannian connection f',8 (Christoffel sym-

bols). Let be given, in two dimensions, the gravitational potential t9' on one

side and a scalar field 4i and a Yang-Mills potential A' = APdx' on the other,
the matter side. These fields are interacting with each other. A corresponding
general Lagrangian two-form reads

(),:7 + g (4i) (ac, 4i) 2 B)2Vdil = 71 + U(fl + J(!P) (F ) - (7-1)ij

Here the kinetic terms are constructed from (9,!P e,, J d4i and FB =
1 FPdx'A

dx3, respectively. For the string motivated dilaton models, the coefficient func-

tions read:

T(4i) e (,P) - 'ye U((.P) = e-2 PU (q5), J(!P)
e

4
(7.2)

where -y 4 and U(4i) = c in the tree approximation of string theory. A number

of physically interesting models correspond to different values of 7,,E, and U(fl.

7.1 Main result

Locally one can always treat the scalar function 4i as a coordinate on a two-

dimensional spacetime manifold. Denote the second coordinate by A.

In terms of the local coordinates (A, fl, the metric of the general solution of

the gravitational field equation of the model (7.1) reads

ds2 = -4 h(fl e
-2v 05) dA2 (171)2  p2'

h(fl
d. (7.3)
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where

1P

M Q2
h((P) =

0
+ f d p U ( o) + 0 T'(V) e--( P) (7-4)

2 2J( p)

v (4i) = f dV
M (7.5)

T, (1P)

Here MO and Q2 are the inte ration constants which are related to the total
0 9

mass and the (squared) charge of a solution. For completeness, let us give the

solution for the Yang-Mills field:

B
= fBn, fB Q0  2

F fB -
- (7-6)

jop) ) ,

The proof of this result, see below, is obtained by the method developed for

two-dimensional PGG.

7.2 Dilaton models and PGG

In two dimensions, torsion is represented by its trace one-form T := e,,]T', see

Table 2. Then the Riemann-Cartan connection decomposes into the Riemannian

and post-Riemannian pieces as follows:

F,,,,3 = f,,a - 0,, eo j T + VO e, J T = f,,3 - *T. (7-7)

By differentiation we find a corresponding decomposition of the Riemann-Cartan

curvature. For the Hilbert-Einstein two-form this yields

R'O,q,,o = + 2 d * T. (7-8)

Let us consider the "scalar-tensor" type PGG model with the Lagrangian

VO = -

1
[ (fl T,, A *T' + w(fl R'Oq.01 (7.9)

2

Here  (fl and w(fl are the scalar functions which describe a variable gravita-
tional "constant" h la Jordan and Brans-Dicke. Variation of (7-9) with respect
to the connection yields the field equation

 (fl T = w(fl d 4i (7-10)

Hereafter the prime denotes derivative with respect to  P-

As we see, the torsion trace turns out to be an exact one-form, and the scalar

dilaton field plays a role of its generalized potential. Substituting (7-10) into (7-8)
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and (7-9), one finds (dropping an exact form):

VO
1 f?ao,,,, (W1)2

d4i A *d4i (7-11)
2

W - (W1)2
(ace 4i) 2=77 -R+. (7-12)

2 2 

This is evidently equivalent to the dilaton model (7. 1) with

T(4i)
W OP) (W I ( p)) 2

(7-13)
2 2 (fl

The equivalence of (7-9) and (7.12) can be also verified by comparing the relevant

sets of field equations.
The scalar-tensor PGG model (7-9) can be straightforwardly generalized in

order to include the potential for the dilation field iP and a possible interaction

with the matter field TI:

Lt.t V + Lmat(T/, DTI, (fl, (7-14)
1 1

V  (flT, A *T' - w(flR'O%O + U(flq- (7-15)
2 2

As we know, for standard matter in two dimensions (scalar, spinor, Abelian
and non-Abelian gauge fields), the spin current is zero, -ro = 0, and hence

the "second" field equation (7.10), which results from varying the connection,
remains the same for the generalized model (7.15). This fact is the basis of the

equivalence of the scalar-tensor model (7.15) and the general dilaton type model

(7.1) with the same identifications of the coefficient functions (7.13). The dilaton

field potential U(4i) is taken from (7-1), whereas

Ln, ,t = 2j(fl FB A *FB = J(fl (FP )2 n (7-16)Z3

represents a specific matter field T1, with T1 - AB .In general, we may have a

larger set of matter fields.

7.3 Proof

The explicit construction of the general solution for dilaton gravity, (7-3), (7.4),
and (7-5), is obtained by the same machinery as that developed for two-dimen-

sional PGG.

Again, we have a Lagrangian which depends on the torsion square t2and the

curvature scalar R. The gravitational field momenta (3.3) read

P =  (fl, r. = - U_, (fl. (7-17)

The Lagrangian two-form (7.15) can be transformed into the corresponding
Lagrangian density in (3.2): V 1 ( t2 + u) R) - U. Hence (3.13) yields
1 t2 _U.

2

2
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In the absence of matter, which can be enforced in (7.16) by putting J((P)
0, we immediately obtain the gravitational field equations (3.9)-(3.11) in coor-

dinate and gauge invariant form:

d( 2t2) 2 U(fl -

I
 (,P) t2 d ri, (7.18)

2

d( *T) 2 U ((P) 71, (7.19)
dr. -U. (7.20)

If a Yang-Mills field is present, its contribution manifests itself in a simple "de-

formation" of the potential function U(fl, similar to the shift of the cosmological
constant in (6.45). Indeed, taking into account the Yang-Mills field equation for

(7.16),

D(J(O) * FA) = d(j(!P)fA) + CABcAB j(!p)fC = 0, (7.21)

where fA :=: *FA, we straightforwardly obtain the first integral

fBfB (j( p))2 =: Q2 (7-22)01

With the help of this result, one can prove that the field equations (7-18),(7-19)
are formally the same, if the potential U(fl is replaced by

1 2 /j (,p).U (,P) _4 U ( P) +
2
Q0 (7-23)

In order to simplify the notation, we will treat both cases simultaneously, con-

sidering the system (7-18)-(7.20) with U(fl properly defined.

The integration of (7-18)-(7.20) is straightforward. At first, after substituting
(7-17), we immediately obtain a linear equation for  2 t2,

W t2)1 = W1
 2 t2 - 2 Uw', (7.24)

where the prime denotes a derivative with respect to  P. Formal integration yields

4i

 2 t2 = 2 e'('P) M() + f (7.25)

V(fl = dW
M

(7-26)f (W)

The construction of the metric can be completed along the lines of our general
method. Namely, since t2 54 0, one can construct a zweibein from the torsion one-

form T and its dual *T. According to (7.20), we may consider either r. = -w(fl
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or the the field -P itself as a first local coordinate. The second ("time") coordinate,
say A, is then naturally associated with another leg of the zweibein,

 *T := BdA, (7.27)

with some function B = B (A, r,(fl). Substituting the latter into (7.19) and

taking into account the volume 2-form q =
B dr, A dA, see (2.12), we obtain

an equation for B:
 2t2

o9 In B
_

2U
(7.28)

 2t2i9K

On integration

dK
B = Bo(A)  2t2 exp f  

.

= B0 (A)  2 t2 e`(-P), (7.29)

and, again without loss of generality, one can put the function B0 (A) = 1.

Accordingly, the metric finally reads:

-

dK2
2 t2exp 2

dK
dA2

=  2t2 e-2v (5) dA2 _

(WI)2
d4i2. (7.30)9 -

 Tt_2 +  f   2 t2

Recalling the identifications (7.13), which establish the relation between the

dilaton and PGG, we arrive at the result (7.3) by putting h(fl :_ _ 2t2/4.
Then the equations (7-25) and (7.26) reduce to (7.4) and (7-5), respectively.

7.4 Concluding remarks

The general solution described in Sec. 7.1 contains all the exact black hole con-

figurations reported earlier in the literature as particular cases which corre-

spond to specific choices of the coefficient functions T(fl, 9 (fl, U(fl, j (fl, cf.

[9, 28, 30, 27, 34], e.g..
The new results are most useful for the investigation of the dynamical picture

of a gravitational collapse for nontrivial matter sources. Of particular interest is

the case of a non-minimally coupled scalar field which describes the semi-classical
correction to the Lagrangian due to Hawking radiation.
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Black Hole Thermodynamics
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Max-Wien-Platz 1, D-07743 Jena, Germany

Abstract. The aim of this lecture is to build a bridge between ordinary thermody-
namics and black hole thermodynamics. To this end, we review the principles of general
relativistic irreversible thermodynamics and derive a universal parameter thermody-
namics for rotating fluids ("rotating bodies"). To extend the procedure to black holes,
the black hole limit of the rigidly rotating disk of dust solution is discussed. It then

turns out that the first law of black hole mechanics is just an extension of the Gibbs

equation for the disk. Problems with the second law of black hole thermodynamics are

discussed.

1 Introduction

Thermodynamics and Einstein's Theory of Gravitation are closely connected.
The first law of thermodynamics asserts the validity of the energy principle for

every thermodynamic system. On the other hand, energy and momentum form
the source term Tik of the Einstein equations

1
Gik =- Rik - - Rgik - 87rTik

2

where the left hand side consists of terms containing the gravitational fields gik
Hence, every thermodynamic system is self-gravitating, and fundamental ther-

modynamic investigations have to involve the phenomenon of gravitation. The
consideration of astrophysical objects raises very interesting questions such as:

What happens to the entropy of a star falling in a black hole? Does the entropy
disappear into the black hole, lowering the entropy of the universe? Is that a vio-

lation of the second law of thermodynamics which states that entropy can never

be annihilated? To answer such questions we have to examine the phenomeno-
logical nature of entropy as a measure of irreversibility of physical processes.

Hence, I will first try to find a phenomenological description of irreversibility in

general relativity. (For the sake of brevity, many wonderful concepts in statistical

thermodynamics like phase space, ergodic behavior, coarse graining, statistical

operator and information, must unfortunately be omitted.)

2 How can irreversibility be described?

In order to get an idea for the general relativistic description of the phenomenon
of irreversibility let us have a look at classical mechanics in the Lagranglan
formulation.

F.W. Hehl, C, Kiefer, R.J.K. Metzler (Eds.): LNP 514, pp. 319 - 382, 1998
© Springer-Verlag Berlin Heidelberg 1998
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The one-dimensional motion of a mass point (mass m) in a potential V(x)
follows from a variational principle for the action W,

t2
M  b2 _ U(X),W := f dt L(x, i), L :=
2

' (2)
ti

where the Lagrangian L depends on the coordinate x and the velocity i. A

variation 6x vanishing at t = tj, t = t2 induces a variation 6W of the action,

t2

X __* X + 6XI 6XIt142 = 0 : 6W dt
6L

6x
, (3)1 &

ti

where 6LI& is the variational derivative,

6L 9L d aL
(4)

bX 19X dt o9-,;,
*

Reversible motion of the mass point obeys the variational principle

Jx arbitrary : 6W = 0 (5)

with the consequence

JL
= 0: mi = _aU (6)

6X (9X
'

There is no restriction on the variation Jx (except the second relation in eq. (3)).
Obviously, this cannot be true for irreversible motions (e.g. under the influence

of friction), since irreversibility creates a distinction between the future and
the past directions in time. We define virtual future states x + Jx by the special
variation Jx = iJw, Jw > 0 and satisfy the second equation in (3) by Jwjt142 = 0'

With these definitions, irreversible motions can be characterized by

t2

JX JW > 0 : JW dt
JL

-4- Jw > 0 (7)
6X

ti

with the consequence

JL C9U
0- :=

JX
' > 0:

ox
+MX  b>o. (8)

On account of the time translation invariance of the Lagrangian L one obtains

the Noether identity

dH i9L
or __ H ' 'X7

- L (9)
dt '
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where H is the Hamiltonian. Obviously,

dH
0 (10)it-

must hold for all irreversible processes and justifies the variational principle (7)
a posteriori. The most simple way to ensure the inequality o, > 0 is with the

linear ansatz

09U
-

19X
- Mx = ii, 1 > 0

, (11)

which is frequently used to describe friction phenomena in particle mechanics.

Indeed, I > 0 guarantees o, > 0.

3 Relativistic thermodynamics

It turns out [1] that the procedure outlined in section 2 can be applied to Ein-

stein's gravitational theory step by step. Again, we choose a particular system
and consider a one-component fluid with two state variables (a,b). According to

(2) we may discuss an action integral W

W:= f d4X \I--gL, L - L(9ik i gik,l i gik,l,m; a, b) (12)
V

where D is an arbitrary compact domain of space time. g is the determinant of

the metric tensor gik (i, k, 1 = 1 - 4). Thus the Lagrangian L depends on the

state variables VA,

(VA) = (9ik, a,b) (13)

The variations corresponding to (3) may be written in the form'

VA -+ VA + 6VA i 6VA 1,9D 0 : 6W = f d4 X
6L

6VA , (14)
5VA

where

6LV,'--g o9LV--g i9L-\1_-g
+

9Lvl----g
(15)

6VA aVA 19VA,i A,i,k),i 19V
i,k

To describe irreversibility in the sense of (7) we need a definition of the virtual

future states VA = VA + 6VA. The following ansatz has proved successful [1], [2]:

6VA = 6W40VA, 6LO >- 0, &VIOD = 01 (16)
1 Summation convention. (9D is the boundary of D.
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where Cg is the Lie-derivative with respect to a future pointing, time-like vector

field ?9'.
Introducing the unit vector u', u'ui = -1, we may represent V' in the form

UZ
vi - - T > 0 (17)

T '

We call T the invariant temperature andO' the temperature vector. Analogously
to eq. (7) we assume the inequality

6W=f d4
X

6LVf--g
6VA > 0 (18)

6VA

with JVA as in eq. (16). From this equation it follows that

1 6L
XVVA -> 0 (19)

9 JVA

Because of the diffeomorphism invariance of L, the infinitesimal diffeomorphism
generated by an arbitrary vector field is a local symmetry of the theory. Choosing
t9' as the generator of the diffeomorphism and applying Noether's theorem, one

can show that or is the divergence of a well-defined four current S' (cf. [1] [2]),

0' - St ;i (20)

cf. eq. (9).
We let S' denote the entropy current, and consequently o- denotes the entropy

production density. Thus

si;i > 0 (21)

is the second law of thermodynamics in a field theoretical formulation.
In order to demonstrate the consequences of these definitions let us apply

them to the particular system mentioned above. To describe a one-component
fluid, we choose

(VA) - (gik, a, = T, a2 = Q) (22)

and

L -
-

R
+f (23)( 167r

where f is the density of the free energy depending on temperature T and

baryonic mass density Lo. The local thermodynamics of the volume elements
of the fluid may be derived from the Gibbs equation

df =  zdp - s dT , (24)
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where A and s are the chemical potential (free enthalpy) and the entropy density
s, respectively. The hydrostatic pressure p and the energy density E can be

introduced via Legendre transformations,

.6 f + Ts, p = Ao - f . (25)

We are now able to calculate the entropy production density (19) for fluids. We

get

0 ik
Gik i A

> 0 (26)01 - - 87rT -Ct9gik + (QU );i
167r T

with

0 ik
[(6 + P)UiUkT + Pe (27)

Again, a linear ansatz (cf. (11))

ik
0 ik 1ik1mc,9g,M- 87rT (28)G

with the phenomenological coefficients

liklm = liklm (VA (29)

and the local conservation of baryonic matter,

(,Qu,); i = 0 (30)

guarantee the semi-definiteness of the entropy production density,

1
1iklm _p t9 9ik -C t9 91m  -> 0 (31)

16r

provided the coefficients likIrn of the quadratic form (31) obey certain positivity
criteria. Eq. (29) indicates that the phenomenological coefficients may depend on

the state variables. Let us now discuss eqs. (28) which are the Einstein equations
for fluids with heat conduction and viscosity. They appear, in our context, as the
linear phenomenological relations of the Onsager theory, cf. [3]. Obviously, the

energy momentum tensor of the fluid consists of the "reversible" perfect fluid
0 ik

liklmpart T and the "irreversible" part (1/87r) Cgglm representing the influence
of the irreversible processes. liklm can be constructed from the coefficients of heat

conductivity and viscosity, from the metric g
ik and from the four velocity W of

the medium. The Lie derivative of the metric tensor,

-CVgik -= 'Oi;k + t9k;i (32)

consists of the gradients of temperature and velocity which are the "driving"
forces of the irreversible processes of heat conduction and viscosity. A more
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detailed discussion may be found in [2]. Summarizing our results, we can now

answer the question posed in the heading of section 2: Irreversible dynamics
implies 6W > 0 (at least at the level of linear phenomenological relations, cf.

eqs. (11) and (28)). Moreover, 5W > 0 together with the "Onsager philosophy"
of linear phenomenological relations which is a basic idea of the so-called phe-
nomenological thermodynamics of irreversible processes, cf. [3], provides us with

the basic equations (11) and (28) of irreversible dynamics.
The theory as outlined here, can be used to formulate the equilibrium condi-

tions of thermodynamic systems. However, it is not hyperbolic, and thus predicts
acausalities in the the context of propagation phenomena. There is a "second

order" theory developed by ISRAEL and STEWART [4]-[7] in which perturbations
are known to propagate causally via hyperbolic differential equations. A detailed

analysis may be found in HiscoCK and LINDBLOM [81, [9]. It should be possi-
ble to find a Lagrange formulation of the Israel-Stewart theory by replacing the

matter term, f (T, p), in eq. (23) by a more general expression (which would also

depend on the gradients of the thermodynamic state variables).

4 Parameter thermodynamics

We turn, now, to the consideration of the thermodynamic equilibrium of the

fluid. The general equilibrium condition o- = 0 together with eq. (31) tells us that

the Lie derivative of the metric has to vanish (in the sense that the "driving"
0 ik

forces no longer act, 409ik -+ 0), and the integrability condition T ; k = 0 of

the field equations (28) contributes a further condition. Thus we arrive at the

particular equilibrium conditions

-C,09ik = 19i;k +dk;i = 0,
A

= 0 (33)
T

1i

for one component fluids. We now want to apply these conditions to rotating
bodies. The Killing equations for the temperature vector ensure that rotating
bodies in a state of thermodynamic equilibrium must be stationary. In addition,
we may assume that theses bodies are axially symmetric. Though physical intu-

ition tells us that a steadily rotating fluid ball should take the shape of a body
of revolution (otherwise it would emit gravitational radiation and thus couldn't

be stationary), a rigorous proof of the axisymmetry is not available.

Any axisymmetric and stationary metric admits a 2-dimensional Abelian

group of motions G2,

 i;k +  k;i = 0, ?7i;k + ?7k;i = 0,  i,k 71k - 77i,k  k = 0

(34)ui < 0, ni 77i > 0

with Killing vector fields and 711. The space-like vector 711 generating axial

symmetry has closed (compact) trajectories and vanishes on the axis of rotation.
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From these equations we conclude that we can choose a coordinate system in

which the Killing vectors take the form 77' and the metric tensor4 3

gik(X) is independent of the time coordinate x
4
= t and the space (azimuthal)

coordinate x
3
-  p. Using eqs. (34), the Killing vector t9i takes the form

,di =
UT

W + floni) (35)
T To

(To and S?o are constants). Then, by u'ui - - 1, we obtain

TO
2

( i + S?0 77i W + 00,01 -= e2V (36)
T

V is the generalization of the "corotating" Newtonian gravitational potential.
Eq. (36) can be used to write the second equilibrium condition (33) in the sym-
metric form of the Tolman conditions [10],

TeV = To, fieV = flo (37)

where j o is a constant. With the help of eqs. (35) and (37) we have "integrated"
the equilibrium conditions (33). Since the angular velocity S?o must be a con-

stant, the rotational motion u' of equilibrium configurations (bodies in their

equilibrium state) is rigid. For compact fluid configurations, the conditions (34)
and (35) together with the remaining field equations

0

[(6 + P)UiUk ik]Gik = 87rTik = -87r + PLO. (38)

imply [111

Eiklm 0 = Eiklm (39)

i.e. the space-time of rotating bodies admits 2-spaces orthogonal to the 2-dimen-
sional group orbits formed by the Killing trajectories (Siklm is the Levi-Civita

tensor) -
Condition (39) excludes "coils", where the source has a toroidal topology.

We now have to discuss the Einstein equations (38) under the conditions

(35), (37). The most elegant way to do so is to go back to the action functional

(12), with the Lagrangian (23), and to plug in the equilibrium conditions (35),
(37). Since the variable pair (T,,4) enters the equilibrium conditions (37), it is
advisable to make use of the corresponding thermodynamic potential p = p(T,4)
defined by

dp = od[z + s dT (40)

This can be done by performing the Legendre transformation f --* p (25) in

eqs. (23), (12). One then obtains

4
X

R
W - WP d g __ P (41)f 167r

D
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Furthermore, one can (using a coordinate system with 6', 771 specify4 3

the domain D as the region between two asymptotically flat space-like hyper-
surfaces to = constant, tj - constant, which intersect the world lines of the

body. Let Z (t = constant) be an intermediate asymptotically flat space-like
hypersurface. It follows immediately from eq. (40) that

tj

3
X

R
WP dt Gp = (ti - to)Gp, Gp d V/-_ g - _P (42)f f 161r

to Z

Thus it is sufficient to restrict our attention from Wp to Gp. By eq. (37) we

obtain

p = p(T, [t) = p (To e-V, fto e-V) . (43)

On the surface of the body the pressure must vanish. Let us assume that the

material of the body is able to form a closed surface (note that there are po-
tentials p = p (To e- V, fLo e- V) which have no zeros). Then as a consequence of

eq. (43), V must be constant on the surface,

VIsurface = Vo i p (To e-Vo - -VO) = 0
, tio e (44)

Hence, one of the constants (To, [to) may be replaced by the zero Vo and the

pressure function can be written in the form

TO
,

'0 - V TO
1 =0 (45)P - h ev h

Ao Ao

In the adapted coordinate system ( i = 6i
,

i
= 60 V is a function of the metric4 77 3

and the angular velocity S?o, cf. eq. (36). Thus, p depends on the metric and the

(constant) parameters (Vo, Qo). (p also depends on the ratio [101TO and could

depend on further material parameters. However, we will focus our attention

on these two "kinematic" parameters.). Finally, the equilibrium action Gp is a

functional of the metric and a function of the parameters (S?o, Vo),

Gp = Gp [gik; VO) S?01 - (46)

To derive a (global) Gibbs equation for Gp (comparable with a fundamental

equation like T 6S = 6U + p 6V) let us compare two infinitesimally close states

[gik; Vo, f2o] and [9ik + 69ik; VO + WO) f2o + H20]. Then, by eqs. (40) and (45) and

allowing variations 69ik vanishing at the boundary of the domain D, we obtain

[12]

6flo - JV Wo 6M 3X ik
0 ik

6Gp
2 167r f d vl"--g 6gik (G - 87rT

(47)
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where

J:= 3X f d V-g ([e + p] uiq'e-') (48)

3Xjv:= f d g(e + P) (49)
Z

j is the angular momentum of the system and JM denotes the variation of a

surface term M (which will turn out to be the total (energy-) mass of the rotat-

ing body). Eq. (47) may be compared with a similar expression in the Ginzburg-
Landau theory of super-conductivity. According to that theory, the gravitational
field gik (X) is an "order parameter" associated with different equilibrium config-
urations of a rotating body. From eq. (47) we may conclude

M
--tik

0 ik
5 Gp +

2
VOJ20

= 0 G -_ 87rT (50)

ik
0 Zk M

(ii) If G == 87rT then J Gp +
2

- _j 6s?o - JV wo . (51)

The first statement implies that, for fixed parameters (VO, 00), the Einstein

equations for a rigidly rotating body in its state of equilibrium can be obtained
from a variational principle. Related principles have already been discussed by
HARTLE and SHARP [14], BARDEEN [15], [16], CARTER [17], and BARDEEN,
CARTER and HAWKING [18]. Our procedure is comparable with the derivation
of the equilibrium conditions from the thermodynamic potentials. The second

equation states that the rotating body (matter and field) is an equilibrium system
characterized by the thermodynamic potential

G GP +
M

(52)
2

and the fundamental equation

JG Jf?o - MWo . (53)

"On shell" - i.e., when the field equations hold - we have

M
G -

2 f d'x V -__g(p - .6) +
2

(54)

where

3X M - 2 f?j + f d V-g(s + 3p) (55)
Z
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is the total mass. Obviously,

jV= M- S?J-G (56)

It can be useful to perform a Legendre transformation

S = e-VO jV (57)

in eq. (53). We obtain

6S = e-v- (W - flo Jj) (58)

and have thus found a potential in the additive quantities M and J. Eqs. (53)
and (58) establish a parameter thermodynamics [12] which is useful e.g. for

calculating the far field parameters M and J from the source parameters Vo
and S?0 with the aid of a single potential G,

M = M(Vo, S?o) flo J + G -

9G
(59)

aV0

j = J(V0, flo)
aG

aflo
(60)

Black hole physicists would call an expression like (58) a "first law of (parameter)
thermodynamics".

Strictly speaking, the functional G, depends also on the parameter com-

bination TOIAO. If we had wanted to take this additional parameters into ac-

count, we would have had to replace the fundamental equation (58) by the
more general expression [13]

To 6S = dM - f2o Jj - A0 6.A4

where A4 is the baryonic mass of the fluid, cf. eq. (69). However, the parameter
TolAo is not relevant if one starts with an equation of state .6 = e(p). Making
the aforementioned generalisation has no affect in the following chapters.

5 'Thermodynamics' of the disk of dust

Encouraged by our success in deriving eq. (58) we may ask if a parameter thermo-

dynamics could also be derived for black holes. Starting with a 'normal' rotating
body we could try to find a parametric transition to the black hole state and
to extend equations like (58) to apply to black holes. This proposition sounds a

little unlikely to succeed for two reasons:

(i) It is known from studies of static fluid spheres that there is a gap between
the last "normal" matter configuration and the spherical static Schwarzschild
black hole.

(ii) Little is known about rotating bodies and their black hole limits.
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It is the aim of this section to show that a recently found solution for the rigidly
rotating disk of dust [19]-[22] (an approximate solution of the problem was given
by BARDEEN and WAGONER [23]) could help to overcome these difficulties, since

it has the desired black hole limit.

Dust matter consists of particles (mass elements) which interact exclusively
via gravitational forces. In the language of hydrodynamics, dust is a perfect fluid
without pressure (p = 0). As a consequence, its energy density E coincides with
the baryonic mass density (particle number density) g,

(61)

the motion is geodesic,

iLi = Ui;k U
k 0 (62)

and the baryonic mass is a conserved quantity,

(Loul
;T
= 0

. (63)

At first glance, such a matter model would not seem like a suitable candidate
for a thermodynamic treatment: From eqs. (24) and (25) one obtains

8 E 1
Td- = d- +pd- (64)

and, because of p = 0, 6 -

Td- 0
. (65)

Q

However, the remarkable fact emerges that, despite its oversimplified ordinary
thermodynamics, the parameter thermodynamics of the model seems quite nor-

mal.

The details of the disk of dust solution may be found in [22]. In the context

of the present discussions, it suffices to point out that dust is a hydrodynamic
model for a many particle system, where the particles (mass elements) move on

the geodesic lines (62) of their own gravitational field. In our case, they form
a rigidly rotating disk (a flat "galaxy"). The distribution (surface density) of
the particles cannot be prescribed a priori. Instead it must be calculated from
the Einstein equations. Fig. I shows typical densities in the Newtonian region
(/,t < 1) as well as in the ultra-relativistic region (p < /_1o = 4.62966184

... ;
the "centrifugal" parameter I-L is defined by I-L = 2go2Q0 2e-2Vo, where go is the
coordinate radius of the disk).

We turn, now, to the discussion of the "first law of parameter thermodynam-
ics" (58). For dust (p = 0, E = g) eqs. (49), (55), (57), and (58) yield

Ar = M - 200j, (66)
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0.00 -
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P/P.

Fig. 1 The normalized surface mass-density o,,If?o of the rigidly rotating disk of dust

as a function of the normalized radial coordinate p/Loo. Loo is the coordinate radius of
the disk.

and

jyd (bM - o0ji) (67)
M - 2S?oj

where

yd = log S. (68)

For dust, S has a simple meaning. Because of eq. (30), the baryonic mass M of
the disk is given by

M f d3
X \I'--gLo e

-V (69)
Z

As a consequence of eqs. (44), (49) and (57) we obtain

e- VO 3X \/-Of d gL- = e-VOA( = S
, (70)

r

so, S is simply the baryonic mass of the rigidly rotating disk of dust. After a

simple rearrangement of eq. (67) we have

6(yd _ log M) =

S?OM j(M21j) (71)
M4/J2 - (f20M) (M2 /J)
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Obviously, DOM and SIM = M-lexpyd must be functions of the similarity
variable M'1J,

WoM = F(M21j), S=MH(M21j), (72)

where

H'(x) _

F(x)H (x)
(73)

x[2x - F(x)]

Hence, F(x) is the only unknown function. To calculate it one needs details of

the disk solution which cannot be discussed here. Fig. 2 shows the result of an

earlier discussion [19], [22] and indicates that a solution exists for the parameter
interval 0 < M21j < 1. The Maclaurin disk as the Newtonian limit corresponds
to M21j --* 0, whereas the solution approaches the extreme Kerr solution in the

ultrarelativistic limit M2 _4

1.4

Newtonian disk

1.2

1.0

)dlek200M

0.8
Unsteinian disk

Kerr block holeKerr black h

0.6

0.41

0.2

0.0 1........
0.0 0.2 0.4 0.6 O.b 1.b 1."2 1.4

M2Ij

Fig. 2 The normalized angular velocity 2f?oM as a function of the mass M and the

angular velocity J for the classical Maclaurin disk (dashed line), the general relativistic

dust disk and the Kerr black hole.

On the other hand, for a Kerr black hole (which is stationary and axisym-
metric) it can be shown that there exists a linear combination, Xi, of the Killing
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Fig. 3 TM vs. M2/j for the dust disk and the Kerr black hole.

vectors and

i
=

i
+ flbh 1 (74)X 0 Iq

which is normal to the event horizon and satisfies the relation X'Xi = 0 on the

horizon. The constant Qbh is called the angular velocity of the horizon. From
0

-

+ f2bh obhq. = 0X'Xi = W -

0 W) ( i -4 0 1)
(75)

4 3

and the explicit knowledge of the Kerr solution, see e.g. R. WALD'S textbook

[24], one obtains the parameter relation f2obh = flobh (M' j) for the Kerr black

hole. Surprisingly, the product 2 flbh M,0

2f?bhM = G
M2

-

1
(1 < M21j < 00) (76)0 ( j ) (M2/j) +  ' M4_/J2_ 1

is again a function of the similarity variable M2/J and coincides with the corre-

sponding disk function F at M2 = J, cf. Fig. 2. Hence, the Kerr angular velocity
flbh can be considered to be the extension of the angular velocity flo of the disk.

0

6 Parameter thermodynamics of black holes

Unfortunately, our theorem (51) does not apply to black holes directly. However,
we can extend the parameter thermodynamics of dust into the black hole region,
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S/M2

4.0

0.0

M2/j

Fig. 4 "Entropy" S for the disk of dust and the Kerr black hole

since the black hole function G(M21j) is an extension of the dust function

F(M21j). Consequently, eqs. (67) or (71) may be used to find an entropy-like
potential ybh for Kerr black holes

bybh -

1
(6M _ f2bh6j) (77)

M - 2f2oj 0

extending the disk of dust potential (68). Using eqs. (76) and (77), it is not

difficult to show that

Ybh logA, (78)
2

where

A = 87r (M2 +  M4 - J2) (79)

is the area of the event horizon, see [24], p. 327. Introducing the surface gravity
r,, of the Kerr black hole, see [24], p. 331,

V M_4__ '72
(80)

2M(M2 + V/M-4

we may write eq. (67) in the form

K
jA = 6M _ f2bhgj (81)

87r 0
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which is the famous Bekenstein formulation of the first law of black hole me-

chanics [25] - [28]. Finally, we may connect ybh = -1 log A and yd =: logM
at the transition point M2 == J. It should be noted that yd and ybh are only
defined up to additive constants. This fact permits the introduction of a common

potential Y for both regions,

logM + log 7 (0 <
M2

< 1
,

disk region)
Y = j2 (82)

1
log A <

M
< oo

,
black hole region)

2

and to fix the constant -y by

A IM2=j = 72,"2 IM2=j (83)

It can be shown [221 that MIM is a function of M21j, cf. Fig. 5. The detailed

analysis of this function yields

1.6

1.4

AIM

1.2

1.0

M2/j

Fig. 5 Ratio of baryonic mass A4 and total mass M for the rigidly rotating disk of

dust

M
1.59562

... (84)
M M2=j

and together with AIM2=j = 87rM2

v/8-irM 3.13965
... (85)

MO M2=j
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Aided by the first law of black hole mechanics we can introduce a common

ccentropy" S for the disk as well as for the black hole region by

2.M2
(disk region)

S e2Y 4
(86)

A
(black hole region)

4

satisfying the first law of parameter thermodynamics for disks and black holes

T6S = dM - f2odJ (87)

with

2(M - 2120j)
-

2eVO
(disk region)

T
^YM2 -YM

(88)
2(M - 2f?bhj,) K--0

-
- (black hole region)

A 27r

Fig. 3 illustrates the equation of state T = T(M, J).

7 Discussion

We have seen that the action integral for phenomenological matter "on shell",
i.e. when the Einstein equations hold, becomes a "thermodynamic" potential
satisfying a first law of parameter thermodynamics (cf. eq. (51)) which, applied
to the rigidly rotating disk of dust, leads to the first law of black hole mechanics

(81). In this context it should be mentioned, that generalized first laws of black
hole mechanics can be derived in very general field theories, see HEUSLER and
STRAUMANN [29], [30], IYER and WALD [31], [32] and Wald [33] (Interested
readers could also consult the lecture by C. KIEFER in this volume.)

The deciding step in formulating black hole thermodynamics was made by
BEKENSTEIN [25], who pointed out that Hawking's area theorem [27] might be

closely analogous to the second law of thermodynamics, which states that the

entropy S of a closed system never decreases 2

,AS > 0.

Since the area A, of the black hole horizon, can also never decrease,

AA > 0
,

and A according to equation (81), is a potential in the extensive quantities mass

M and angular momentum J, one is prompted to interpret A (times a constant)
as the entropy Sbh, of the black hole,

Sbh A
,4

 AS is the entropy difference between two equilibrium states.
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and r, as the temperature Tbh, of the black hole,

Tbh -

rl
*

2-ir

However, the identifications made here would have remained formal without

HAWKING's analysis of quantum particle creation effects in the field of a black

hole and his result [34] that a black hole radiates particles with a black body spec-
trum exactly at the temperature r,/2,7r. (In physical units, Tbh = (hr,)/(27rck)
and Sbh = (C3 kAI(4Gh), where k and G are the Boltzmann constant and the

gravitational constant, respectively.) Hence, quantum theory is essential for the

interpretation of black hole thermodynamics. (The interested reader is referred

to the lectures of C. KIEFER and A. WIPF in this volume.)
The quantum physical interpretation of the geometrical quantities A and

r. is only a first step towards a "unified" thermodynamics of black holes and

Ccnormal" matter. Certainly, BEKENSTEIN's proposal, [25], [26], to introduce a

total generalized entropy S as the sum of the "normal" matter entropy S' and

the black hole entropy Sbh,

S = Sm + Sbh

and to postulate

,AS > 0

is a very interesting attempt to generalize the second law (for equilibrium states).
However, physical processes are irreversible and therefore one wants to de-

scribe phenomena such as the local production of entropy (cf. eq. (21)) or the

entropy transport between subsystems one or more of which could be a black
hole. It would be a fascinating task to try to develop the underlying theoretical

concepts.

Encouraged by the success of parameter thermodynamics (which is a spe-
cial case of ordinary thermodynamics) in yielding the first law of black hole
mechanics (see eq. (87)) and Figs. 2, 3, 4), one would be tempted to speculate
that the Noether entropy current S' of eq. (20) could likewise have a meaning
for black holes. According to [1], [2], S' has the structure

Si = t9k Rik + "matter terms"
,

where t9k is a temperature vector (17). An equation like this could provide a

"geometrical" representation of the role played by the entropy, and the second

law (20) could be a consequence of this equation and additional energy and

causality conditions.

In order to solve problems like these it would seem to be necessary to study
more examples for the transition of "normal" thermodynamic systems into their
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black hole state, and to discuss equilibrium systems consisting of "normal" mat-

ter and black holes3. One example can be found in W. ISRAEL'S lecture where

he discusses the thermodynamics of a collapsing shell.

The answer to the question of whether eqs. (86), (87)7 (88) permit the inter-

pretation of S = - 2M2 /4 (or a functional of this quantity) as the entropy of

the disk of dust, is not easy to find. Interestingly, ^ 2M2/4 is a conserved quan-

tity for a disk consisting of a fixed number of particles (fixed baryonic mass).
This quantity cannot change during a transition from one equilibrium state to

another. The situation would change dramatically, if the disk reached a black

hole state (see Fig. 2). After such a phase transition the conservation of baryonic
mass is no longer required, and S (which is now the black hole area) can increase

in time. Note that S as defined in eq. (86) is differentiable (C') at the transition

point M' = J, see Fig. 4.

I would like to thank R. Meinel and G. Schhfer for valuable discussions and

D. Ruder, A. Kleinwdchter, and D. Moran for the great assistance during the

preparation of the manuscript.
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Gedanken Experiments in Black Hole Thermodynamics

Werner Israel

Canadian Institute for Advanced Research Cosmology Program, Department of
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Abstract. Quantum effects at high accelerations and in strong gravitational fields

give rise to counter-intuitive effects, such as "acceleration radiation", and mysterious
connections, such as the relation between black hole area and entropy. Idealized ex-

periments, using accelerated mirrors, descending boxes and massive shells, can help to

provide intuitive understanding and operational definitions of these concepts.

1 Introduction

In the mid-1970s, just 50 years after Heisenberg, Schr6dinger and Dirac deci-

phered the mechanism of the quantum world, the quantum revolution impacted
upon general relativity in profound ways whose full implications we still struggle
to understand. The roots of these developments are traceable to the influence

of John Wheeler, Bryce De Witt and Yakov Zel'dovich who stressed already in

the 1960s the fundamental importance of quantum effects in black holes, strong
gravitational fields and the microstructure of spacetime at the Planck level.

Jean Pierre Luminet, in his contribution to this volume (Chap. 1), describes

how the striking parallels between the laws of thermodynamics and black hole

dynamics uncovered by Christodoulou (1970) and Bardeen, Carter and Hawk-

ing (1973) emboldened Jacob Bekenstein in 1972 to advance the then heretical

suggestion that this might be more than a formal similarity - that the area of

a black hole might actually be a physical measure of its entropy.
About the same time, Steven Fulling (1973) undertook the first study of

quantum field theory in uniformly accelerated ("Rindler") coordinates. He noted

that the natural ground state for a uniformly accelerated observer is different

from the Minkowski vacuum. There is a characteristic temperature

Ta, = h a/27r (1)

(a is the acceleration and I have set Boltzmann's constant kB = 1) associated

with this difference, as first pointed out by Paul Davies (1975), and operationally
clarified by William Unruh (1976).

Meanwhile, in 1974, Hawking had published his celebrated discovery that

black holes evaporate, and that the process is thermal, with characteristic tem-

perature:

TBH = h r./27r (2)

F.W. Hehl, C, Kiefer, R.J.K. Metzler (Eds.): LNP 514, pp. 339 - 363, 1998
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(where n is the so-called surface gravity of the horizon), thereby giving precise
expression to Bekenstein's hypothesis.

One of the most surprising predictions of quantum field theory in flat space
was reported by Davies and Fulling in 1976. A mirror, moving through empty
Minkowski space with non-uniform acceleration, should emit a flux of negative
energy in the "forward" direction (the direction in which its acceleration in-

creases) and (to conserve energy) an equal flux of positive energy backwards.
This arises from the interaction of the mirror with zero-point fluctuations of a

quantum field.

The late 1970s saw extensive development of all these topics. Yet the deepest
questions remain with us today. What, at bottom, is this entity which we have
become accustomed to call "black hole entropy", and where (if its localization
has a meaning) does it hide - near the surface or deep inside the hole? How
does it contrive to have a universal geometrical form, irrespective of the nature

and fate of the materials which collapsed to form the hole and presumably linger
on inside it? What becomes of the quantum correlations between exterior and
interior when the hole finally evaporates?

The field has been dredged for twenty years but is still capable of yielding
up new surprises. There has, for instance, been a recent suggestion [1], based
on indirect and formal arguments, that for extremal (zero surface gravity) black
holes, entropy is not related to area but is actually zero. This would mean that
black holes obey the third law of thermodynamics in its strongest (Planck) form.

Some of these strange phenomena refer specifically to curved spacetimes,
others are already present in Minkowski space. Yet one has an impression of
deep underlying connections.

My purpose here is to show that a good deal of the mystery can be dispelled
by considering simple idealized experiments, i.e., by attempting to understand
black hole thermodynamics directly in the spirit of Carnot. The exposition may
thus serve as a supplement or introduction to the systematic treatment by my
colleagues elsewhere in this volume.

2 Acceleration in Minkowski space

The work of Davies and Unruh is often summed up in the phrase: a uniformly
accelerated observer "perceives" the Minkowski vacuum as apparently filled with
thermal radiation at the acceleration temperature Ta,, given by (1). What does
this really mean? A better way to say it: the ground state for a uniformly ac-

celerated observer has negative energy. So he views the Minkowski vacuum as

elevated (thermally) above his ground state.

But what is the origin of this negative energy? Can one understand it oP-
erationally? Let us turn to the result of Davies and Fulling: a non-uniformly
accelerated mirror in Minkowski space radiates negative energy "forwards" and

positive energy backwards. Davies and Fulling calculated the flux F explicitly for
a mirror in (I + 1) spacetime dimensions interacting with zero-point fluctuations
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of a massless scalar field. (The reader is invited to recover their result in a simpler
way in one of the accompanying exercises.) They found for the two-dimensional

stress-energy:

T4, = F IJ, F = -

h da
(3)

127r d-r
'

Here, a(,r) is the mirror's acceleration at (retarded) proper time -r; 1. is a lightlike
propagation vector pointing in the direction of positive a and normalized by
1 - u = -1 at the retarded point; ull = dzA/dr is the unit tangent to the mirror's

world-line x" = z '(-r).
Now let us see how the Davies-Unruh and Davies-Fulling results are related.

We consider a one-dimensional "box" with perfectly reflecting walls, initially
empty and at rest. The box is gently set into motion and ends up in a state

of uniform acceleration. En route, it necessarily passes through a phase of non-

uniform acceleration during which the rear wall emits negative energy forwards,
the front wall positive energy backwards. These two fluxes are not quite equal in

magnitude, since the rear wall must change acceleration a little faster in order to

reproduce the Lorentz contraction of the box observed in the laboratory. Thus

there is a net preponderance of negative energy, which accumulates inside the

box.

An observer inside the box sees the negative process as adiabatic. It cannot

affect the internal quantum state, which remains the ground state. But this

state now has an energy density lower than the Minkowski vacuum outside the

accelerating box.

We shall verify presently that this mechanism even provides a quantitatively
accurate explanation of the negative energy density inside the box, at least in

(1+ 1)-dimensions.

3 Black hole entropy, descending boxes and the Boulware

state

The idea that black hole entropy and area might be proportional had to contend

from the outset with a gedanken experiment proposed by Robert Geroch in 1971.

This was an idealized process for depositing arbitrary amounts of entropy into

a spherical black hole without any change in its mass or area.

Fill up a small, weightless box far from the hole with mass-energy in the

form of radiation. Slowly lower the box toward the horizon, making it do work

by hauling up a counterweight. When it reaches the horizon, its total (material
plus potential) energy is zero: all of its initial mass-energy has been extracted as

work. Now open a trapdoor in the box's floor, and allow the radiation to drain

into the hole. You thus deposit all of its entropy but none of its mass.

The net result is that the entropy of the black hole has been increased but

its mass and area are unchanged. It is therefore impossible to maintain propor-

tionality between black hole area and entropy.
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It took ten years to spot the loophole in this argument. In 1982 Unruh and
Wald [2] called attention to the fact that the black hole appears surrounded by
a bath of quantum (acceleration) radiation to a local stationary (hence acceler-

ated) observer. The Archimedean buoyancy of this bath opposes free descent of
the box, and it grows without bound near the horizon where the local accelera-
tion temperature becomes infinite.

Alternatively, we may adopt the viewpoint of a local observer in free fall,
for whom the quasi-stationary box is accelerated upwards. Thus negative energy
enters the box and builds up as the box is lowered further and its acceleration
increases. This acts as a debit on the net mass-energy content of the box, which

eventually becomes zero and then negative. The box has now reached a floating
point. It is a bubble of negative energy in a sea of zero energy (or nearly zero

energy: the effects of vacuum polarization and Hawking radiation are everywhere
bounded and very small for astrophysical-size black holes, and for simplicity we
here ignore them). To make it descend further one would have to press down-

wards, and therefore no further mass-energy can be extracted. Unruh and Wald
were able to show that radiation dropped from the floating point retains enough
energy (along with its entropy) to maintain the correct proportionality between
black hole area and entropy.

In describing such gedanken experiments it is essential to distinguish between
the viewpoints of a local stationary observer (who "sees" a bath of acceleration

radiation) and an inertial observer (who does not). Acceleration radiation has no

more objective reality than centrifugal force. For examples it does not gravitate,
i.e., its stress-energy does not appear on the right-hand side of the Einstein

equations. Yet it provides a perfectly valid description of certain experiments if

applied consistently. It is the failure to observe a consistent distinction between
the stationary and inertial viewpoints which has led repeatedly to confusion in
the literature.

A useful re-analysis of the Geroch experiment which emphasizes these points
was published by W. J. Anderson [3] in 1994. In the course of his analysis,
Anderson noted a further interesting point: the ground state for the inside of
the slowly descending box is what is known as the "Boulware state".

I must digress for a moment to explain what this is and place is in context.

We are concerned with a quantum field - for definiteness let us say a mass-

less scalar field - propagating on a stationary, asymptotically flat gravitational
background.

The Boulware state is the one which appears empty to observers at infinity.
Further down, vacuum polarization effects associated with the increasing gravity
will induce a (real) non-vanishing effective stress-energy with a negative energy
density of order -TI 3 4,,,,Ih - -ha in (3+ 1)-dimensions, where a is the local

upward force required to hold a unit mass stationary.
The Boulware state is the natural ground state of a quantum field propagat-

ing through the spacetime of a stationary star. But it would be unstable in a

black hole spacetime, since its stress-energy diverges at horizons.
We may think of the Boulware energy density as a superposition of two
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negative-energy fluxes - an outflux, infinitely blueshifted and diverging along
the future horizon'h+, and an influx which (in the case of an eternal black hole

with a past horizon W-) diverges along'h-.
These divergences can be cured by altering the boundary conditions at in-

finity, i.e., changing the quantum state. The negative-energy fluxes and their

divergences can be neutralized by injecting two steady streams of positive en-

ergy, an influx from past lightlike infinity -T-, and an outflux to future lightlike
infinity _T+. These new fluxes can be maintained by enclosing the black hole in

a hot, perfectly reflecting sphere of large radius kept at the Hawking tempera-
ture. The new state represents a black hole in thermal equilibrium with its own

radiation inside a large spherical cavity. It is known as the Hartle-Hawking state.

If the black hole was formed by the gravitational collapse of an initially
stationary star, there is no past horizon needing regularization by an influx from

infinity, and _T- can be left empty. We require only the positive-energy outflux to

-E+. The state defined by these boundary conditions agrees with the Boulware

state in the remote past, and in the future (after the collapse) represents a

situation in which positive energy flows out to infinity, with a corresponding
influx of negative energy through the future horizon, i.e., it represents a black

hole formed by collapse which radiates freely into space and absorbs negative
energy (which would gradually eat away its mass if we took back-radiation into

account). This is the Unruh state, appropriate for an evaporating black hole.

In (1+ 1)-dimensions, the quantum stress tensors for the various states take

a simple explicit form, and it is then easy to make these remarks more concrete.

This is the subject of one of the accompanying exercises (see also the lectures of
Dr. Wipf), so I will confine myself to summarizing the results for the two states

of most interest to us here, the Hartle-Hawking and Boulware states.

It is sufficiently general to consider 2-metrics of the form

ds2
_

dr2

- f (r)dt2. (4)
fM

We denote by r,(r) the redshifted gravitational force, i.e. the upward acceleration

a(r) of a stationary test particle reduced by the redshift factor f1/2 (r), so that

(r) == If'(r) . (5)
2

A horizon is characterized by r = ro, f (ro) = 0 and its surface gravity defined

by ro = K (ro).
Quantum effects induce an effective quantum stress-energy Tab (a, b,

r, t) in the geometry (4). If we assume no net energy flux (Ttr = 0) - thus

excluding the Unruh state - Tab is completely specified by a quantum energy
density p = -Tt' and pressure P = Tr.

In (1 + l)-dimensions the only result we need from quantum field theory
is the so-called conformal or trace anomaly T,,. Classically, the trace would
vanish for a conformally invariant field. In the quantum theory, the anomaly is
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most easily understood formally as arising from dimensional regularization of
the stress tensor: the conformal invariance of the field in 2 dimensions is broken
in (2 + E) dimensions, and this leaves a finite residue in the limit 'E -4 0. The trace

anomaly is a c-number, i.e., it is independent of the state. In (1 + 1) dimensions
it is proportional to the curvature scalar R. Its explicit form for a massless scalar
field is

Ta R, (6)a 24-7r

with R f" (r) for the metric (4).
It is now simple to integrate the conservation law V - 0 and obtain

 ; b

expressions for the individual components p and P. This gives

fP = -

h
(K2 + const.) (7)

24,7r

Different choices of the constant of integration correspond to different boundary
conditions, i.e., different quantum states.

For the Hartle-Hawking state, we require p and P to be regular on the horizon
r = ro, giving

h K2 _ K2 h dr.
PHH 0

f PHH ::--: PHH + - (8)247r 127r dr

When r -+ oo this reduces to (setting f -+ 1, k -+ 0)

PHH ;:z PHH ,,,
'7r

TB2H ) TBH _

h
KO , (9)6h T7r

which is appropriate for one-dimensional scalar radiation at the Hawking tem-

perature TBH-
For the Boulware state the boundary condition is p = P = 0 when r = 00.

The integration constant in (7) must vanish, and we find

h K2 h dK
PB -

- -

, PB :-= PB + - (10)247r f 127r dr

If a horizon were present, the Boulware stress-energy would diverge there like

7r
T2 T

h
PB "-Z' PB

acc , a -a, (11)6h 27r

where a = K/fl/2 is the local acceleration of a stationary observer.

4 Descending box in (1 + 1) dimensions: energy density
of the internal ground state

Following Anderson [3], we now attempt to calculate the energy density inside
an initially empty one-dimensional box which slowly descends from infinity in



17. Gedanken Experiments in Black Hole Thermodynamics 345

the 2-geometry with metric (4). We shall then compare the answer with the

Boulware energy density (10).
As the box descends, its gradually increasing upward acceleration causes

negative and positive energy fluxes to flow into it from the floor (F) and ceiling
(C) respectively. I shall assume these to be given by Davies-Fulling formula (3).
Thus,

dE h da
(12)

dt
F

127r dt
F

*

There is no a priori justification for this assumption in a curved space: the Davies-

Fulling formula was derived for a mirror moving through Minkowski space. By
ignoring the possible appearance of curvature-dependent terms in (12), we are

assuming a "quantum equivalence principle" for the local rate of emission from
the mirror.

The downflux of positive energy from the ceiling has a form similar to (12),
but we must take into account that this energy is boosted by a factor yCIfF)1/2
in dropping to the floor. The net rate at which the energy in the box is changing
is therefore

dE
_

h
f 1/2 f112

da
_ f1/2

da
(13)dt 127r dt

C
dt

F

*

Introducing the proper vertical height z f f-1/2dr, we can write, for floor and

ceiling (i = F, C)

1/2 dai
:=

1/2 dai dzi dai dzi
A

dt A
dzi dt

f
dri dt

in which the proper velocities dzi/dt are the same at both ends for a box of fixed

proper length I = ZC - ZF- If I is small, (13) reduces to

dE
_

h
f-1/2

d da (fl/21) f-1/2
dr

dt 127r * dr dr dt

The energy accumulated in a box which descends from infinity to radius r is
obtained by integrating this expression:

E = I
r, rf-112 d fda

127r dr dr

Recalling that a = (1/2) f-112f and integrating by parts yields

Ell -
h

(f" - a2) (14)
247r

for the energy per unit length inside the one-dimensional box.
In particular, if f (r) - r, we have the case of a box driven from rest into uni-

f:)rm acceleration on Minkowski space. Then (14) shows (as promised in Sec.2),
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that the internal ("Rindler") ground state has an energy depressed below the

Minkowski vacuum by just the amount that allows an internal observer to assert

that the Minkowski vacuum is "hot" relative to his ground state, with a relative

energy density which is thermal and equal to -17rTa,,,/h-6

In general, (14) agrees precisely with the Boulware energy density (10), even

to the inclusion of the curvature-dependent contribution arising from the con-

formal anomaly.
In one sense, the conclusion we have reached - that the ground state in-

side the box is energetically indistinguishable from the Boulware state - is not

surprising. The box started out empty at infinity. (Emptiness at infinity is char-

acteristic of the Boulware state.) In its slow descent - an adiabatic process
its quantum state cannot change. The modes whose absence defines the ground
state inside the box are always Boulware modes.

What is surprising is that the simplistic approach we have used to calculate
the energy density of this state should yield the "correct" answer (10) exactly.
We assumed that the Davies-F'ulling expression (3) for the fluxes from the walls
would transfer without change from flat to curved space. (That this seems to

work exactly may well be an accident of two-dimensionality, perhaps related to

the circumstance that every 2-space is conformally flat, and our fields are confor-

mally invariant.) We further assumed that the two walls radiate independently
of each other and incoherently, so that we could simply add their fluxes. But in

actual fact the boundary conditions which have to be imposed at the reflecting
walls exclude all but a denumerable set of Boulware modes from the interior.
This affects the internal quantum state, as signalled by appearance of Casimir
stresses. Neglect of these effects is a priori justified (as an approximation) only if
the separation 1 of the walls is large compared with the characteristic Boulware

wave-length (I > h/Ta, - a-'), i.e., only at large accelerations. Fortunately, it

is just in this regime that these quantum effects are of special interest.

5 Moving mirrors and boxes in (3 + 1) dimensions

The sort of hands-on reasoning illustrated in previous sections should retain its
heuristic value in three-dimensional problems. What is less clear at this time,
because of the paucity of exact three-dimensional results, is whether it remains
a reasonably accurate quantitative description.

No-one has yet found a general expression for the flux emitted by a plane
mirror moving in (3+1)-dimensional Minkowski space, i.e. the three-dimensional

analogue of the Davies-Fulling formula (10). (Even for uniform acceleration, the

expression for the stress-energy is extremely formidable, though it reduces to

a simple and intuitive form far from the mirror.) If we repeat the argument of
Sec.4 to compare the energy density inside a three-dimensional box brought into
uniform acceleration in Minkowski space, using the simple ansatz

F=h cia
2 da

+ C2a
d2a

(15)
d-r a-1-2)
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for the three-dimensional flux (which is at least dimensionally correct), we shall

obtain the correct Rindler value for a massless scalar field,

PR -
--

7r2
T4

130h3 acc

provided cl is chosen to be (- 1/3607r2). (The value Of C2 is immaterial to this

argument because d2a/d-r2 is negligible if the acceleration changes slowly.)
However, it would be unrealistic to expect the true flux to have a form as

simple as (15), except perhaps in some "effective" or asymptotic sense. There is,
in fact, no reason to expect it to have any purely local form (depending only on

the acceleration and its derivatives at the retarded point of the mirror nearest to

the observer) - it could be a functional depending on the mirror's entire past
history. A hint that this problem is really difficult comes from tracing back in

time the path of any photon which has left the mirror obliquely. "After" its "first"

bounce the photon recedes from the mirror with a normal component of velocity
which is a fixed proper fraction of the speed of light. But the accelerating mirror

comes arbitrarily close to the speed of light, and must overtake the receding
photon again, and then again. Thus, any photon now reaching us obliquely from
the mirror must have ricocheted off the mirror an infinite number of times in

the past.
Things are easier for a spherical mirror. (In particular, ricocheting does not

occur.) In 1979, Frolov and Serebriany [5] gave the complete solution of this

problem for a spherical mirror moving with uniform acceleration a in Minkowski

spacetime. Its history is given by

2 2 2
_

2 2
X +Y +z t 1/a .

This has a higher degree of 4-dimensional symmetry than the history of a plane
mirror. All Green's functions (and hence also the quantum stress-energy) can

be expressed in simple closed form using the method of images. (This merely
involves transcribing to the Minkowskian sector the potential of a unit charge in

the presence of a conducting 3-sphere in Euclidean 4-space.)
In particular, Frolov and Serebriany found that the stress-energy actually

vanishes, both inside and outside the mirror, for a conformal scalar field in its

ground state. Since it does not vanish for a static spherical mirror this is evidence
of a rather remarkable cancellation between Casimir forces and the effects of
acceleration in the spherical case.

Encouraged by the simplicity of these results for uniform acceleration, War-

ren Anderson and I have undertaken a perturbation analysis to determine the

flux emitted by a spherical mirror which is changing its acceleration slowly. (This
would suffice - modulo wall effects - to derive the energy accumulated inside a

"box" in the form of a spherical shell slowly descending in a spherically symmet-
ric gravitational field.) This calculation is straightforward, though tedious, and

leads, remarkably, to purely local expressions for the perturbated (Wightman)
Green's function and stress-energy. (The effect of the perturbation on individual
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modes involves the entire past history of the mirror, but in the effects on the

Wightman function, particle and anti-particle modes interfere destructively.) In

the limit a --+ 0, our results agree with expressions derived by Ford and Vilenkin

[6] for a plane mirror with small (variable) acceleration.

The spherical flux is a complicated expression, including terms of the general
form (15) (with variable dimensionless coefficients cl, C2) but also others in-

volving lower time-derivatives. Disentangling truly "radiative" and Casimir-like

terms is a more difficult task here than in (1 + 1) dimensions. At the time of

writing, the proper physical interpretation still falls under the heading of "work

in progress" and I shall not discuss it further here [7].

6 Bekenstein-Hawking entropy and black holes

In Section 2.5 of his lecture in this volume, Dr. Luminet introduced us to the

laws of classical black hole dynamics. These follow directly from the Einstein

field equations, and they relate geometrical properties of the horizon (area and

surface gravity) to the purely mechanical quantities mass, charge and angular
momentum. Thus, for a spherical black hole of mass m, charge e, horizon area

AH = 47rr2 and surface gravity r., the first law reads

K e

87r
dAH = dm -

r+
de

- (16)

The second law (Hawking's area theorem) states that AH is non-decreasing in

any (classical) interaction of a black hole with its environment involving matter

with non-negative energy density.
At this stage we may admit quantum theory into the picture. We then learn

that black holes evaporate thermally, with a characteristic (Hawking) tempera-
ture

TH = hr,/27r . (17)

All of this is nowadays well understood and generally accepted.
It is at this point that things become less straightforward. Let us (follow-

ing Bekenstein) make the very appealing hypothesis that black holes may be
considered on the quantum level to be simply hot objects satisfying the laws of

ordinary thermodynamics. A formal comparison of (16) and (17) with the first
law of thermodynamics then leads us to the cabalistic formula

1 -

SBH = 4AH1h (18)

in relativistic units (G = c = 1). For the purposes of the present discussion it is

perhaps better not to beg the question by calling SBH the black hole entropy. I
shall refer to it as the Bekenstein-Hawking entropy.

The Bekenstein-Hawking entropy undoubtedly tells us something about the
black hole. But what? Is it real or subjective? What exactly does it measure?
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Where does it appear - on or near the horizon, or deep inside the hole? At

what stage in the hole's evolution is it created - immediately upon formation

by gravitational collapse, or only gradually over the long course of evaporation,
like steam from a simmering kettle? What is the dynamical mechanism that

makes SBH a universal function, independent of the hole's past history or detailed

internal condition?

These questions are embarrassing, because we do not know how to answer

them. Creation of entropy is a non-equilibrium process. We have at our dis-

posal an entire arsenal of sophisticated techniques for evaluating partition func-

tions and treating the thermofield statistics of quantum fields propagating in

(3 + l)-dimensional black hole spacetimes, in particular the thermofield dynam-
ics of Takahashi and Umezawa, the imaginary-time formalism of Matsubara and

topological analysis of the black hole Euclidean sector ("Gibbons-Hawking in-

stanton"). But all of these are geared to stationary backgrounds and thermal

equilibrium. Dynamical models have been constructed for the evaporation of

(I + l)-dimensional black holes (for a review, see [8]), but these run into diffi-

culties and have brought us no nearer to answering the basic questions.
Nevertheless, we can discuss and weigh various alternatives. To mention first

the subtlest possibility: it is conceivable that no quantum entropy is irreversibly
created by the hole, no information is lost, and SBH is merely a measure of our

temporary loss of access (during the lifetime of the black hole) to correlations

beneath the horizon. When the black hole finally evaporates completely, these

correlations will be fully restored to us. A black hole formed by collapse of matter

in a pure state will evaporate into a radiation field whose distribution appears
thermal on a coarse-grained level but will be recognized to be in a pure state

once the last photons have left the hole. A scenario of this general type is the

one which tends to be favored by particle theorists.

Alternatively, it is possible that black hole formation and evaporation is

accompanied by an irreversible increase of entropy, and we come back to the

questions how, where and when?

The original (pre-Hawking 1974) motivation for assigning an entropy to a

black hole was to keep account of the thermal entropy of objects thrown into

the hole (Wheeler's teacup experiment). The generalized second law of black

hole thermodynamics (sum of Bekenstein-Hawking entropy and external entropy
non-decreasing) lends support to this view of BH entropy, though current proofs
[91-[111 are hedged with qualifications (e.g. quasi-stationarity).

Nevertheless, it is not possible (as emphasized more than twenty years ago

by Wolfgang Kundt [12]) simply to identify SBH with the thermal entropy of all

the matter which collapsed to form and feed the hole. For a solar-mass black

hole, SBH is 1020 times as large as the entropy of its stellar progenitor. Since it is

an issue of principle we are concerned with, we could even consider an idealized

Oppenheimer-Snyder collapse of cold, pressureless, viscous-free dust in which no

material entropy ever develops. It is possible to slice spacetime at arbitrarily late

times by a complete spacelike hypersurface Z which enters the hole and extends

inwards to the (still nonsingular) centre of the collapsing cloud, yet encounters

no material entropy anywhere.
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The view that entropy is somehow created in the process of evaporation also

meets with difficulties. Black hole evaporation is very nearly - and can be made

exactly - reversible. We simply enclose the hole in a container, so that it comes

into equilibrium with its own radiation, and then allow radiation to leak out of

the container a little bit at a time. This process is reversible and cannot create

entropy.
Zurek and Thorne [9] have suggested that the Bekenstein-Hawking entropy

should be interpreted as the logarithm of "the number of quantum-mechanically
distinct ways that the hole could have been made". (This requires some touch-

ing up for an evaporating black hole, since the number of possible past histories

cannot diminish with time.) Formally, this statement is unexceptionable, assum-

ing that the technical difficulties involved in making it precise can be overcome.

Physically, it demotes SBH to the status of a "class badge", which can tell us

nothing about the state of an individual black hole formed in a specific way. To

be sure, this is already implicit in the universality Of SBH, but the Zurek-Thorne

interpretation simply accepts this universality without offering any dynamical
explanation of it.

The most concretely dynamical and visualizable proposal stems from Frolov

and Novikov [13]. This links SBH with modes (produced by vacuum fluctuations)
propagating "outwards" just inside and alongside the horizon. These modes have

positive frequency but their energy is negative as calibrated for an observer at

infinity (i.e., including the contribution of gravitational potential energy). Their

spectrum is thermal with characteristic temperature TH. Detailed implementa-
tion of this picture is so far still plagued with divergences and ambiguities. And
we are left in the dark about the origins of the irreversibility (if any) associated
with SBH-

If the endpoint of evaporation is indeed a thermal state, then, as we have

seen, we cannot ascribe the entropy created to the evaporation process itself or

to thermodynamical entropy of the material which collapsed to form the hole in

the first place. Which leaves us in a quandary.
Let us retreat to something simpler - an example from elementary thermo-

dynamics. Gas inside a long cylinder confined to a volume V, by a piston. Now
the piston is raised, suddenly or with supersonic speed, to a higher position. The
gas molecules drift upward to fill up the larger volume, say V2, and there is an

increase of entropy. What is the origin of this new entropy? No heat enters the

system, no work is done, there is no viscosity to generate heat inside the system.
This is a non-equilibrium process, and thermodynamics simply does not have

the vocabulary to describe the mechanism by which the entropy changes.
Which does not mean, of course, that thermodynamical methods cannot be

used to calculate the amount of the change. We merely have to devise a sec-

ond idealized reversible process which connects the initial and final equilibrium
states, and apply the first law of thermodynamics. We allow the gas to push up
the piston slowly and reversibly, meanwhile injecting heat (at the proper tem-

perature) to compensate for the work done and keep the internal energy (and
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hence temperature) unchanged. The first law then gives the change of entropy

as

, AS = kB In J)N(V2/V

for a gas of N particles.
The temperature does not appear in this expression. We see that the change

of entropy in the first (non-ideal) process has to be described in statistical-

geometrical terms as a (macroscopically) irreversible increase of the phase-volume
accessible to and occupied by the system as a result of a change of its geometry.

It is perhaps not unreasonable to speculate by analogy that SBH is some-

how linked to the geometrical changes attendant upon the formation of an event

horizon in gravitational collapse. Between the inner and outer horizons of a non-

extremal hole, the collapsing system gains access to a new domain of configura-
tion space marked by dynamical irreversibility (everything is forced to descend)
and infinitely large in extent (the radial coordinate r is now timelike and the

spatial 3-cylinders r=const. extend infinitely in the t-direction). The close link of

SBH to geometry and topology is well-known in the black hole Euclidean sector

[1, 12]. It surely has a Lorentzian counterpart.

7 Reversible black hole creation and black hole entropy

No direct insight into the statistical origins of "black hole entropy" can come from

thermodynamics. But if entropy really is a meaningful state function for black

hole equilibrium states, then thermodynamics can tell us its value and provide
at least an idealized operational definition of it. While we thus learn little of the

real nature of black hole entropy, in compensation we are allowed free access to

all the paraphemalia which are the stock-in-trade of the thermodynamicist
idealized engines employing unreal working substances, thin ("adiabatic") walls

impermeable to the passage of heat and the like. Reversibility and the first law

of thermodynamics are the only inviolable rules.

To find the entropy of any thermodynamical equilibrium state, one invents

a reversible process which arrives at that state from a state of known entropy

(e.g., a state of infinite dispersion and zero entropy), and computes how the

entropy changes in that process using the first law of thermodynamics. In this

and following section I shall report on some work done recently with Frans

Pretorius and Dan Vollick [151 on the reversible creation of a spherical black hole.

Our process involves the quasi-static contraction of a massive thin spherical shell

to its gravitational radius, taking into account that (to maintain reversibility) the

shell must remain in thermal equilibrium with its own acceleration radiation at

every stage. This, incidentally, also provides an operational approach to questions
raised recently [1] concerning the entropy of external black holes.

For the static spherical geometries outside and inside the shell it will be
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general enough for our purposes to adopt expressions of the form

2
dr2

2 02 t2d
r)
+ r d - f (r)d (19)s =

I-(-
This covers as special cases Minkowski, Schwarzschild, Reissner-Nordstr,5m and

de Sitter backgrounds.
Of course the classical stress-energy associated (via the Einstein equations)

with this metric is not the stress-energy of the ground state for the quantum
fields which live in the spacetime. We know that this is the Boulware state, whose

stress-energy (T,,,)B depends on the types and number of fields and is unknown.

For an ordinary star, (T,,,)B is utterly negligible, but for a shell pressed close to

its gravitational radius it generally grows without bound, and its back-reaction

can certainly not be ignored. We cannot compute this back-reaction, but we can

compensate for it. Drawing from an energy reservoir at infinity (in a realistic

setting this could be the cosmic microwave background) we fill up the shell's

surroundings with material whose stress-energy 6T,,, tops up (Tj,,)B to form

a thermal bath which shares the shell's local acceleration temperature Tacc(R)
where they touch at the shell radius r = R. This "topped-up Boulware state"

(TUB) is constructed in thermal quantum field theory by periodically identifying
the coordinate t in the Euclidean sector with period equal to the reciprocal of

the shell's redshifted acceleration temperature T,,. = f1/2 (R)Ta,(R). Then the

TUB's local temperature will vary with depth in accordance with Tolman's law

2T (r) (-gtt)
"
= T,, = const. (20)

To local stationary observers, whose ground state is the Boulware state, the

TUB's stress-energy

Mv)B +'AT (21)Mv)TUB = (T MvV

appears as a thermal bath at local temperature T(r). As an example, in (I + I)-
dimensions it is easy to check from (7) and (10) that the thermal top-up AT,,'
diag(,AP, -,Ap) takes the form

7r 2,AP = Ap = -T (r)
6h

for a massless scalar field, which looks exactly like the flat space expression.
This even extends to (3 + I)-dimensions, at least to a good approximation. In

the Page approximation [17], one obtains the isotropic distribution

,AP = 1"Ap = 7r2T4 (22)
3 30h3

for a conformal scalar field, again exactly as in flat space, cf. [16].
It would be equally apt to call the TUB a "generalized Hartle-Hawking stae"

-

Indeed, it tends smoothly to the Hartle-Hawking state in the limit when the shell
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approaches its gravitational radius. The stress-energy of both states is bounded

everywhere (including the horizon), and is small (of order T4 ) for large black
00

holes. But it does not vanish asymptotically at large radii.

Therefore, in order to keep effects of back-reaction under control, we imagine
the TUB to be encased in a large spherical container of radius Rbig .

Back-reaction
will be negligible if the TUB's total energy (- T,,40R3 in Planck units) is small

big
compared to the shell's mass M, i.e. (in conventional unit)

C2) < (M/,Mpl)
a

  1025 (M/M( ))2/3,Rbig/(2GM/ 3

where mp, is the Planck mass and Mo the solar mass. I shall suppose this
condition satisfied, and accordingly neglect the stress-energy and entropic con-

tributions of the TUB.

Our phenomenological vantage point allows a dualistic approach. The ther-
mal equilibrium condition TTUB = Theii for r = R cooresponds to the viewpoint
of a local stationary observer. On the other hand, for the TUB's stress-energy
we adopt the "objective" (gravitating) value which appears on the right-hand
side of the Einstein equations; this would correspond to what is measured by
a local inertial observer. We are taking this stress-energy (and the associated
TUB entropy) to be negligible for a large black hole.

Both of these quantities would appear far from negligible to a stationary ob-

server near the horizon. It is his point of view that we would be forced to adopt
in a statistical analysis, since no technique is currently available for doing sta-

tistical thermodynamics in anything other than the system's rest-frame. Thus,
the many current papers on black hole thermofield statistics have to resort to

various devices (e.g., "brick-wall" cut-offs or renormalization of Newton's grav-
itational constant [18]) to deal with the resulting divergence at the horizon. A

further, related question is whether and how to make allowance for gravitational
back-reaction in such calculations: the decompositions (21), (22) assume a fixed
geometrical background (19).

8 Dynamics of a spherical shell

Before proceeding with the thermodynamics of the shell, I shall pause here to

assemble the basic mechanical formulae.

Quite generally for an arbitrary surface layer, there is a distributional equiv-
alent of the Einstein field equations which relates the surface energy tensor Sab
to the jump (denoted by [ ... ]) of the extrinsic curvature Kab as one crosses the
3-surface in the direction of its unit normal n4. For a timelike shell history n is

a spacelike vector, but it is sometimes of interest (and it costs nothing extra to

allow for this possibility in our formulae) to consider spacelike "transition lay-
ers", which might, for instance, represent schematically rapid phase transitions
in cosmology or the deep interior of black holes [19]. Accordingly, we take

n - n -= n,4n, = 71 =_ 1
.
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The extrinsic curvature for a given embedding is given by

Kab = e(a) - bn/6 ',

where e(a) are the three holonomic base vectors associated with the intrinsic

coordinates  a, and 6n/J b is a 4-dimensional absolute derivative.
The Lanczos distributional field equations and conservation laws then read

-87r,qSab = [Kab - gabK], nSb = -[ea Tlono], (23)a;b (a) a

where T is the 4-dimensional stress-energy of the ambient medium. The intrinsic
3-metric gab = e(a) - e(b) is continuous across the layer. Specializing now to

spherical metric as

ds2 = R2(,r)dQ2 - 77dr2, (24)

so that (for a timelike history) R(-r) is the radius of the shell at proper time'r.
Since KrI - K = -2KOO, (23) implies

[WO47r77S; = JLO] (25)

All -essential information about the shell's dynamics is contained in (25) and the
conservation law.

The latter is simplified if we now assume that the interior and exterior ge-
ometries are both described by metrics of the form (19) - of course, with dif-
ferent functions f, (r) and f2 (r) respectively. The special form (19) implies that

Trr = Tt', and hence that e(a)T,,,)3no = 0 on both sides, i.e. that the ambient
medium does no work on the shell, and the conservation law reduces to

d
(SrA) + P

dA
=0, P=SO (26)

'r
Ir 0 1

,r d-rd

where A = 47rR2 is the shell's area. This has an obvious intuitive meaning.
It is equally straightforward to obtain the explicit form of (25). If u'

dx'ld,r _= ;il is the shell "4-velocity" (spacelike for a transition layer!) we find

(enumerating the four-dimensional coordinates as r, 0, V, t)

0' = (1 ) 0, 0, i) , n, = (i7 0,07 -1 ) .

The normalization n cot n = -u u = q gives

n',9c,,r fi (17f + 1 2)1/2

where E = sign(ncar) = 1 is another sign factor which tells us whether the
radial coordinate r increases outwards. (In a closed universe or inside a black
hole it need not!) Finally,

0 jg 1 2)K,9'= -n . n (r fn,/R
2
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and (25) has now been reduced to

47r,qRS [,E(nf + 1 2)1/2] (27)

Introducing the self-explanatory notation o- = -SI, M = 47rR20., (26) and

(27) become

77M -
- [,E(q +  2)1/2] )

dM
+ P

dA
= 0. (28)

R d-r d-r

The acceleration i can be found by differentiating the first of these equations,
eliminating A by using the second equation, then dividing through by k For

a static shell we have 1 
- 0, and this yields an expression for the surface

pressure P:

M [,E (,qf) 1/21 167rP +
2f

(29)
R 1/2 R

in which it is understood that fi fi(R) (i 1, 2).
It is instructive to see the explicit form of these expressions, say for a shell

having gravitational (Schwarzschild) mass m and electric charge e, with a flat

interior. We set f, (r) = 1, f2 (r) = I - 2m/r + e
2 1,r 2, E = Tj -- 1 in (29) and find

1 M2 - e
2 M2 - e

2

M = M -

2 R
P =

167rR2(R - M)
(30)

These expressions have obvious Newtonian counterparts and simple intuitive

meanings. We can immediately derive the differential relation (for fixed charge
e)

dm = V(dM + PdA) (31)

where

V = f22 = (I - MIR) (32)

is the gravitational potential or redshift factor which recalibrates locally mea-

sured mass and work to energies available to an observer at infinity.

9 Shell thermodynamics

We can move on now to thermodynamical considerations. Since gravitational
"force" is discontinuous across the shell, observers at the inner and outer faces
have different accelerations. This means the inner and outer TUBs in which

the shell is immersed are at different temperatures. To maintain reversibility,
an "adiabatic" diaphragm (impermeable to heat) must be interposed between

the faces. Other strange properties of the shell will emerge as we proceed. Their
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unreality is irrelevant. The shell's raison d'6tre is purely functional, to serve

as a reversible link which enables us to keep track of how the entropy changes
between the initial and final equilibrium states - an infinitely dispersed mass

and a black hole.

We can picture the shell as a pair of concentric spherical plates (inner and

outer masses M, and M2) bonded together by a massless and thermally inert

interstitional layer of negligible thickness. How we distribute the total shell mass

M = M, + M2 between the plates is arbitrary. Formally, the simplest expedient
is to choose M, so that spacetime is flat between the plates. This generally
makes M, negative, but we are not bound by positive-energy conventions. (In
the simplest case, and the one of most immediate interest, the spherical cavity
interior to the shell is empty, hence flat, and M, = 0)

The two plates thus separate three concentric spherical zones: an inner zone

where the metric function f (r) in (19) as f, (r), a very thin intermediate layer
where f = 1, and an outer zone where f = f2 (r). Applying (29) in them to the

inner and the outer pair of adjoining zones, we find the masses Mi and surface

pressures Pi (i = 1, 2) of the two plates:

Mi 2Mi
= ((1 - Vi), 167rPi

2 (33)
R Vi R

Here, fi and Vi = fi2 are understood to be evaluated at r R, the common

radius of the two plates, and C = (- 1)' is a sign factor, needed because flat space
is on the outside of the inner plate. The temperatures Ti of the plates are given
by the accelerations at the inner and outer shell faces:

Ti = hai/27r, a. = 1f'i (R) /Vi (R). (34)Z
2

This formula gives the intensive thermodynamical variable Ti as a function of
the two parameters Mi and r, though not in the intensive combination O'i =

Mi/47rR2. The thermodynamical equation of state for the material making up
each plate should be flexible enough to allow us to choose the plate's mass and

area independently. This requires that there is a second density parameter ni,

independent of ori, and also a function of Mi and R. Its functional form is strongly
constrained (though not determined completely, see below) by the Gibbs-Duhem

relations, together with the requirement that the equation of state Ti = Ti (ai, ni)
for the intensive variables be equivalent to (34). Since the plates are merely
abstract entropy-carrying devices, the physical significance one attaches to ni is

quite immaterial. To fix ideas, one might think of it as "molecular density".
Written in terms of densities, the Gibbs-Duhem relations are (temporarily

dropping the indices i):

dS = Odo- - adn, S =,3(o, + P) - an. (35)

Here, S is entropy per unit area, )3 = T-1, a = M,3 and ju is the chemical

potential associated with n. These relations look more familiar in their extensive
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form. Setting

St.t = SA, M = o-A, N = nA,

we find that (35) are equivalent to

dSt,t = dM + PdA - 1-,dN, TSt,t = M + PA - Iff. (36)

Now, in the equation

nda =,3 dP + (a + P) d,3 (37)

the right-hand side is completely known, since we have explicit formulae for O',P
and T in terms of M and R. Thus, (37) can be reduced to

nda =

10,
d

1
(38)

2 -y (0--y

where it is convenient to define

ly2 = f'(R)1(87r(oV) (39)

The functions n and a can be chosen arbitrarily subject only to the restriction

(38), imposed by the Gibbs-Duhern relations. The simplest option is to select

plate materials having the "canonical" equation of state (denoted by an asterisk,
and restoring index i)

ni = oil-yi, ai* = (2Coi--yi)-1- (40)

Now, from (34) and (39) we have the identity

Ti = 2h(oi72 (41)i

Hence the canonical chemical potential /-ti* = Tiai* obeys the simple relation

/-t n*. = oi. (42)

Substituting in (35), and noting from (33) and (39) that the surface pressures

can be expressed as

Pi 0,, (,Y2 _ 1)=

2 i (43)

we obtain the entropy densities of the plates as

-2).S* h- ((1 (44)i = OiPi
4

At large radii in an asymptotically flat outer space, f2(r) ;zz 1 - 2M2/r. Hence

from (39) or (43), at wide shell dispersion M2 -* M2 and

2 1 _
1
M2 /R (R -4 oo). (45)1 2 2
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If we want to think of ni as "molecular density", we see from (40) that we

should assign unit positive rest-mass to each "molecule" in the outer plate, and

from (42) that canonical molecules have unit chemical potential when the plate
material is cold.

When its slow contraction terminates, the shell is hovering just outside the

horizon r = ro of the external geometry - f2 (ro) = 0 - whose surface gravity
K2 = lf2(ro) is assumed to be non-zero. (The extremal case is dealt with in the

2 diverges according tofollowing section.) Then (39) shows that 72

2 K2
_V- 1 V2 2K2 (R - ro) (R -+ ro). (46)72 (M2 /R2) 2 1 2

Hence, from (44),

"M S2* h-1, (47)
R-+ro 4

i.e., the entropy of the outer plate is one quarter of its area in Planck units, in

the black hole limit.
In the simplest situation, the spherical cavity inside the shell is empty and

flat, so that, for the inner plate,

fi(r) = 1, Mi = P, = S, = T, = 0, (48)

and the outer plate contributes all of the mass and entropy of the shell. We can

then read off the entropy of the final (black hole) state from (47) as equal to the
Bekenstein-Hawking entropy.

It should be noted that this conclusion goes significantly beyond its verifi-

cation of the generalized second law [9, 10, 11] which show that one quarter
of the change in area (when the black hole slowly ingests material) is equal to

the entropy absorbed. Here we have derived the entropy-area relation in integral
form, eliminating the possibility of an additive constant.

The reversible shell-contraction described above suggests a fairly obvious

operational definition for SBH. But would such a definition be additive? Imagine
that, in the field of a pre-existing black hole with Bekenstein-Hawking entropy
Sold (or of any object, e.g., a star, having this thermodynamical entropy), we

lower a shell of entropy Sshell :--:: S2 + 81 to the radius where an outer black hole,
of area Anew, is about to form, so that S2 :::::: !An,w/h according to (48). Is the

4

new Bekenstein-Hawking entropy obtainable by simple addition as Sold + Sshell?
At this stage of the operation, definitely not. The upper plate by itself already
accounts for the full Bekenstein-Hawking entropy of the new configuration, so

it would be necessary for the negative entropy S, of the lower plate to cancel

exactly the entropy of whatever was inside the cavity initially, i.e., S1 + Sold
would need to vanish. In general, this is not true. However, we are still free to

carry out a further reversible procedure: we can sweep all the material inside
the cavity outwards and onto the new shell. (If this material includes an inner

black hole, this will involve dilating the shell representing it until it merges with
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the lower plate of the new shell - in effect, a (reversible) "evaporation" of the

inner black hole.) This "flattens" the cavity inside the new shell and annihilates
the lower plate. The total entropy at the end, now carried entirely by the upper

plate, is S.heii :` !Anew/h, which is SBH for the final black hole. In this specific4

sense, SBH may be called "additive", but it is perhaps more correct to say it is

"forgetful": SBH for the final configuration betrays no clue about the entropy
originally contained in the space now occupied by the hole.

These considerations suggest the following operational definition: SBH is the

maximum thermodynamical entropy that could be stored in the material which

gathered and collapsed to form the black hole, if we imagine all of this material

compressed into a thin layer near its gravitational radius.
Of course, this imagined process bears no resemblance to any real scenario

of black hole formation. But it actually describes rather well the time-reversed

process of evaporation since Hawking's mechanism of virtual pair-creation is a

skin-effect confined to a thin layer near the horizon. In the real evaporation pro-
cess the escaping particles are temporarily detained near the horizon by redshift
effects on their way out of the hole; the shell model collects all of them at one

time. Kundt's description Of SBH as "evaporation entropy" sums up the situation
rather well, with the previse that the evaporation process itself (being virtually
reversible) cannot be the source Of SBH; it acts only as its conduit.

The key result (47) was established for a special, "canonical" form of plate
material. But since physical significance attaches only to the initial (infinitely
dispersed mass) and final (black hole) states, and not on the (reversible) route

by which we get from one to the other, one would expect (47) to be insensitive

to the properties of its plate materials. Let us examine how far this is true.

The most general functions n and a satisfying the Gibbs-Duhem relations

(with Tj equal to the acceleration temperatures at the two plates) are obtained

by replacing ai* in (32) by an arbitrary function of itself, gi(ai*), and respecting
the invariance of nidai in (38). This yields the general formulas

ai = gi(ai*), ni = ni*/gi'(ai*) (49)

* Ipini/o,i - gilaigi, (50)
Thus the most general expression for the entropy densities of the plates is

4h(Si = 1 +  i 2(1 - 2yjnj/(oj)). (51)

We see that the conclusion (47), i.e.,

lim =

I
h-1,S2 - (52)

R--*ro 4

is unchanged under arbitrary transformations (49) which leaves Aini bounded
in the high-temperature limit. Indeed, we can allow transformations which are

singular in this limit, provided only that

lim Mjnj1(ojTj) = 0, (53)
Ti -- oo
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recalling (41).
We cannot expect (52) to be invariant under arbitrary singular transforma-

tions. At the root of this problem is the fact that the black hole endstate is a

singular state for the plate material (P2 and T2 become infinite). In these cir-

cumstances there is no a priori justification for excluding or constraining asymp-

totically singular behaviour of thermodynamical quantities. But it is reassuring
that the loose constraint (53) guarantees that our conclusions are independent
of the plate material for a very broad class of equations of state.

In passing, let us note that the freedom contained in (49) can be gainfully
used to "improve" the behaviour of the plate material at low temperatures. For

canonical material Si*lTi - R (R -+ oo). By suitable choice of gi in (49) in the

limit ai* -+ oo, we can arrange SilTi -+ 0.

10 The third law

There are essentially two distinct versions of the third law of thermodynamics
[20]. The first, proposed by Ernst in 1906, states that isothermal processes be-

come isentropic in the limit of zero temperature. An essential form says that

the temperature of a system cannot be reduced to zero in a finite number of

operations.
In the third edition of his "Thermodynamik" published in 1911, Planck enun-

ciated a stronger form of the third law: "The entropy of any system tends, as

T -+ 0, to an absolute constant, which may be taken as zero." (There are difficul-

ties in making this formulation precise [21], involving enumeration of degenerate
ground states in the statistical theory, which are not immediately relevant to us

here.)
In their 1973 paper on "The four laws of (classical) black hole dynamics",

Bardeen, Carter and Hawking proposed a form of the third law patterned after

Nernst's unattainability principle: "It is impossible by any process, no matter

how idealized, to reduce the surface gravity to zero in a finite sequence of oper-
ations."

A more specific form [22], which makes precise the meaning of "finite sequence
of operations" states: "A non-extremal black hole cannot become extremal at

a finite advanced time in any continuous process in which the stress-energy of

accreted matter stays bounded and satisfies the weak energy condition." (It be-

comes clear from this formulation that certain quantum processes which involve

absorbtion of negative energy can violate the third law - but not Hawking
evaporation, since the influx of negative energy falls to zero near extremality
like -TH4 in (3 + l)-dimensions.)

For a long time it was believed that there is no black hole analogue to Planck's

version of the third law. Recently, however, this has become a matter of contro-

versy. Arguments based on black hole instanton topology and pair creation [1]
suggest that the entropy of extremal black holes is zero. On the other hand, the

remarkable indirect calculations of "black hole entropy" by counting states of
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strings on D-branes recover the old value SBH :::::::: !Alh for extremal black holes
4

[23].
We can examine this question from our observational point of view. As the

simplest illustration, let us consider the quasi-static contraction of an extremally
charged spherical shell with empty interior. Setting Jel = m in (30) we find

M = lel, P - 0. If the shell is made of "canonical" material, (44) yields S* = 0

at all stages of the contraction, leading to

Sextreme BH = 0- (54)

The universality of the standard area formula thus breaks down in the extremal

case.

The result (54) is, however, quite sensitive to the equation of state of the

plate material. For arbitrary material, (51) gives for the shell's entropy density

S = 1h-1(1 - pn/o,), (55)
2

whose value can be made arbitrary by choice of the function g(a*) in (49), (50).
(In the extremal case, 72 = 1 and a* = r-1 according to (44) and (40).)

Thus, it would appear that an extremal black hole differs from a generic
one in that its entropy is not independent of its mode of formation and past
history. One point which seems to emerge rather clearly from the shell model

is that the distinction between the extremal and non-extremal cases may be

less a matter of zero versus non-zero temperature than of finite versus infinite

temperatures measured by local stationary observers. There are many precedents
for a situation where a simplicity and universality found at high temperatures
breaks down at ordinary temperatures.

11 Concluding remarks

Our gedanken-experiments suggest an operational definition of Bekenstein-Haw-

king entropy and also a specific form of the generalized second law: In interac-

tions of a black hole with its environment involving absorption or evaporation
of material with prescribed mass, charge and angular momentum, SBH changes
by precisely the maximum thermodynamical entropy which could be stored in

this material when it is compressed into a thin shell just outside the horizon.

This formulation in its turn suggests that SBH should be considered as ef-
fective entropy for black holes, in the same sense that 6000 K is an effective

temperature for the sun. As far as interactions with their environments are

concerned both objects are indistinguishable from shells (of the same size and

mass) whose entropy or temperature have the effective values. (The analogy is

imperfect, since we are ignoring solar "hair" -sunspots, etc.)
This point of view provides a rationale for the numerous current attempts to

understand black hole entropy and information statistically by focusing on the
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neighbourhood of the horizon. At the same time, it offers no direct encourage-
ment for the hope that such efforts will lead to insight into the deeper properties
of black holes.

A diametrically opposing view is suggested by the recent, uncannily suc-

cessful calculations of Bekenstein-Hawking entropy by counting states of strings
attached to D-branes [23]. This is not a very specific test of superstring theory:
indeed, one would expect any plausible microtheory to reproduce the results

of thermodynamics in the semi-classical limit. But it is welcome evidence that

superstring theory passes a minimal consistency check in its claim that it offers

a glimpse of the microstructure underlying space, time and matter, and further

that the Bekenstein-Hartle formula actually tells us something about the inner

depths of a black hole.

The sharply contrasting viewpoints expressed in the last two paragraphs are

by no means necessarily incompatible. We can readily appreciate this if we recall

by analogy that there are two very different but concordant ways of deriving the

luminosity of the sun: either from its surface temperature and radius or from

the nuclear reaction rates in its core. The first simply meters the radiation on

its way out; the second tracks it down at the source.
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Internal Structure of Black Holes
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Physics and Astronomy, University of Victoria, P.O. Box 3055, Victoria B.C., V8W
3P6 Canada

Abstract. Gravitational collapse to a black hole leaves a decaying wake of gravita-
tional waves. Some of those waves are absorbed into the hole and have dramatic effects

on the geometry near the inner (Cauchy) horizon because of a diverging blueshift.

Determining the inner structure of the hole is really an evolutionary problem with pre-
cisely known initial data. The evolution can in principle be followed to within Planck
distances of the singularity at the inner horizon, using only well-established physical
laws (the Einstein field equations). This lecture reviews recent progress in this area,

highlighting outstanding problems and gaps.

I Introduction

The sector r < 2m of the Schwarzschild geometry was long considered outside
the realm of legitimate scientific enquiry. For more than 40 years, r = 2m was

confusingly termed the "Schwarzschild singularity", a surface which, even for
those who understood that it was not actually singular in a mathematical sense,
was still a border where Einstein's theory parted company with sensible physics.

After 1960, as people gradually got accustomed to the Kruskal extension and
to the reality of quasars and gravitational collapse, there was a general fall-back

(with some notable exceptions: John Wheeler, Igor Novikov) to what was essen-

tially the astrophysicist's position: that r = 2m demarcates a region which can

never influence the outside world, and is therefore of no operational significance
or physical interest. (One may perhaps discern vestiges of this attitude in the
motivation underlying some of the recent attempts to burden this impalpable
boundary surface with all of the hole's entropy and information.)

But the justification for believing in a permanent demarcation of this kind

collapsed with the discovery of black hole evaporation in 1974. It is becoming
more and more obvious that a full understanding of black hole evolution will not
be achievable so long as a particular (and eventually the most crucial) sector of
the spacetime is left out of consideration.

A fairly recent first incursion into this area is a program to explore the early,
classical phase of the hole's internal evolution. The word "evolution" is used

advisedly. We are really concerned, not with a structural, but an evolutionary
problem. Inside the hole the radial coordinate r is timelike; deeper layers corre-

spond to later times. Causality therefore allows us to take a piecemeal approach,
exploring first the outer, classical layers (which will in fact take us nearly all the

F.W. Hehl, C. Kiefer, R.J.K. Metzler (Eds.): LNP 514, pp. 364 - 382, 1998
© Springer-Verlag Berlin Heidelberg 1998
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way down to the outermost classical singularity), and deferring the more diffi-

cult questions of quantum gravity which arise when curvatures begin to approach
Planck levels at greater depths.

I can confine myself here to a very brief elementary survey, since there is now

a considerable literature on this topic, including reviews both introductory [1, 2]
and more advanced [3]. A Workshop on black hole interiors was recently held in

Haifa, and the Proceedings [4] may be consulted for further details.

2 Internal evolution: classical formulation

The classical phase of the hole's internal evolution presents us with a problem
which is mathematically quite definite and, in principle, straightforward. It is a

hyperbolic initial-value problem of Cauchy's type. The evolution equations are

the classical Einstein field equations. The initial data are set on or near the event

horizon. The task is to evolve these data forward in time up to the point where a

singularity is imminent. (At this stage the classical evolution equations fail and

the quantum regime takes over.)
Thanks to the enormous simplification arising from the no-hair property (see

the lectures of Luminet and Heusler elsewhere in this volume), and to the work

of Richard Price, the initial data are known with some precision (in marked
contrast to the situation in cosmology). Subject to one caveat (possible failure
of the cosmic censorship hypothesis), it is generally expected that the unchecked

collapse of an arbitrarily deformed spinning mass produces a black hole whose
exterior field will converge asymptotically toward a stationary configuration, a

member of the Kerr (or, in the presence of charge, Kerr-Newman) family.
The settling process is accompanied by emission and absorption of gravita-

tional waves. Richard Price found in 1972 that these wave-tails decay according
to an inverse power of exterior time. For a general wavelike perturbation J p of

multipole order I (e.g., I = 2 for a quadrupole gravitational wave ig'..) propa-

gating downwards into the hole,

-1P+ 1 (v -4 oo)v 2 (1)

near the event horizon. Here, v is exterior advanced time and p = 41 + 4.

Thus, the initial conditions for the hole's internal evolution, which are set

near the event horizon, consist of the Kerr-Newman geometry perturbed by an

externally decaying wave-tail of the form (1).
It is found that the exterior decay of the perturbation and the convergence

of the exterior field to its asymptotic Kerr-Newman form extend inside the hole.
But here the convergence is non-uniform and breaks down entirely along the

ingoing sheet of the inner horizon, the so-called Cauchy horizon (CH), which

appears in the Penrose conformal map as an inward extension of future lightlike
infinity -T+. (See Figure 1; also Section 2.7 of Dr Luminet's introductory lectures
in this volume.)
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Fig. I History of spherical charged black hole, with infalling radiative tail. EH is the

event horizon, CH the Cauchy horizon. The two angular coordinates are suppressed.
H is an ideal point of this Penrose compactified map. In reality, CH and EH are

3cylinders S2 x R1 of different radii which never intersect. See Figure 2 for a more

faithful representation of the geometry.

The Cauchy horizon's -instability and its source were first noticed by Penrose

in 1968. Let us introduce the lightlike coordinate

V = -e-'O'
. (2)

This is a Kruskal advanced time, in terms of which the asymptotic Kerr-Newman
metric is transformed into a manifestly regular form at its inner horizon. The

ingoing sheet CH corresponds to v = oo, V = 0. (The constant no is the surface

gravity of this horizon. These matters are discussed in detail, e.g., in [5] and

in Ray d'Inverno's introductory text [6].) An ingoing wave - sinwv appears

speeded up near CH in terms of the locally regular coordinate V, and its flux of

energy is received with a diverging blueshift e2r.0 I by interior observers falling
through CH. In the case of the wave-tail (1), its external power-law decay is

overwhelmed by the exponential blueshift. The resulting divergent stress-energy
has back-reaction effects which we shall learn about in the following sections;
they are dramatic and surprising.

The blueshift instability of CH was confirmed in the decade 1973-82 by a

number of investigations which studied the propagation of test fields on a fixed
(usually Reissner-Nordstr6m) black hole background. Near CH, amplitudes of
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wave tail perturbations typically decay like

1 164i - (In JVJ)__  p (V -+ 0-), (3)

as one would anticipate from (1) and (2). Thus, field amplitudes 4i (in particular,
the metric gpv for gravitational-wave perturbations) stay regular on CH to first

order, but their derivatives o9v(P diverge.
Since the Einstein equations are quadratic in first-order gradients W, Vgj,

it was widely expected that taking back-reaction into account would make the

amplitudes themselves blow up on CH at higher orders of perturbation theory.
However, up to now, detailed calculations have not borne out these expectations
(though a final verdict on this question is still open). This is basically because
the divergences are lightlike: roughly speaking, terms quadratic in 09V!P are sup-
pressed because the associated metric coefficient gVV is zero. It thus appears
that the Cauchy horizon of a black hole formed in a generic (nonspherical) col-

lapse is indeed singular, but this singularity may have an unexpectedly mild and

orderly structure.

3 Spherical models

In its most general form the problem confronting us is formidable indeed, and
for a first reconnaissance it is advisable to make whatever simplifications we can,
while (hopefully) not losing the essence of the physics.

Setting the angular momentum equal to zero while retaining a nonzero charge
makes the black hole spherical without radically changing its horizon struc-

ture. Spherical scalar waves are a reasonable simulation of quadrupole gravita-
tional waves insofar as their gravitational back-reaction is concerned. The large
blueshift near the Cauchy horizon suggests further use of an optical approxima-
tion, which replaces the infalling waves by a stream of radially moving lightlike
particles.

The earliest models [5, 7, 8] accordingly considered the effect of radial streams
of "photons" on the interior geometry of a spherical hole with a (fixed) charge
e.

The formulation of this spherically symmetric Problem is elementary. No sin-

gle chart covers the domain of interest to us, and it is therefore convenient to cast

the equations in two-dimensionally covariant form, with the usual Schwarzschild
coordinates r, t replaced by an arbitrary pair XA (A, B, 0, 1) which label the

2-spheres. The 4-metric is then

ds2
= 9ABdxAdXB + r2d02, (4)

with all coefficients functions of xO, x1 only.
The Schwarzschild mass function M(xA) is defined in terms of Vr (XA ) by

9AB (09Ar)(OBr) = f =_ I - 2M/r . (5)
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(In standard Schwarzschild coordinates this reduces to the familiar form g"
1 - 2M/r.)

In the presence of a point charge e, the electric field energy excluded from a

sphere of radius r is (in Gaussian units) 'e2/r. It proves convenient to separate2
off the (uninteresting for our purposes) electrostatic terms, and to define a non-

electric mass function m(xA) by

M = m -

1 e2
(6)

2 r

One can now recast the Einstein field equations G,,a = 87rT,,,8 as two-

dimensionally covariant equations for the scalar fields r(xA), M(XA). One finds

[5] for m,

2 (T B BT D)19AM = 47rr A - JA D 19Br, (7)

where again the Maxwellian contributions have been separated from the stress-

energy components. (In Schwarzschild coordinates, (7) takes a form familiar from

elementary texts:

am(r, t)/o9r = 47rr2(-Tt') , am/,9t =47rr2Tt' .

The equation for r is

VAVBr = -47rrTAB + r-9AB (8)

It is straightforward to check from (7) and (8) that m satisfies the (1 + 1)-
dimensional wave equation [5]

Elm = - 167r2r3TABTAB + 87rrfPj_ , (9)

which elegantly brings out the nonlinearity normally hidden in the Einstein field
equations.

All covariant derivatives refer to the 2-metric gAB; I have defined the "local
surface gravity" r, = (m- e

2 /r)r -2 ; and Pj_ = To" is the (non-electric) transverse

AApressure. In (8) and (9), to simplify the appearance, I have set T = 0, a

condition which indeed holds for the matter sources of interest to us (massless
scalar fields, cross-flowing radial streams of photons).

For the (I + l)-dimensional wave operator the causal Green's function is

simply a product of retarded and advanced lightlike step functions. Hence the
solution of Elm = a is

m(A) adS + m(C) + m(D) - m(B), (10)
B

where dS = (_2g)1/2 d2X is the invariant element of area and the integration is

over a diamond-shaped region ACBD with lightlike sides. By aligning side CA
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with CH, a considerable amount can be gleaned from (9) and (10) about the

behavior of the mass function near the Cauchy horizon.

For an influx of radiation blueshifted near CH according to

TVV - (,yVp)2 - (In IVI)-pV-2 (V _+ 0-), (11)

(cf. 3) the right-hand side of (9) acts as a diverging source for M, provided some

outflow is present too. (For a pure inflow [7], TAB is light-like, TABTAB = 0

and m undergoes little change near CH.) One finds [5] that the mass function

diverges at CH roughly like

m - (In IVI)-' IVI-1, (12)

an effect sometimes called "mass inflation". More specifically [91, if the outflow

is caused by backscatter of the inflow,

m - I uv I -Pe'O ('+') (v -+ oo, u oo) , (13)

where u is interior retarded time, calibrated to decrease toward -00 at the event

horizon and toward the rear of the (past-endless) 3-cylinder CH (see Figure 1).
Since the neighborhood of CH inside the hole cannot causally influence the

outside, the drastic change (12) in the internal geometry remains undetected

outside the hole. Outside observers continue to register a mass close to that of

the progenitor star.

The straightforward interpretation of (12) is that the Cauchy horizon in-

creasingly appears to observers approaching it as a sphere of infinite mass, a

formidable singularity indeed! However, it is spread over the surface of the inner

horizon, and hence is pancake-like and locally weak in a sense which Amos Ori

[81 has made precise. The Weyl curvature and tidal forces (- m/r3) do become

infinite, but the cumulative tidal deformation of bodies falling toward CH re-

mains bounded, and indeed small, up to the very moment of crossing. Stated in

a more coordinate-dependent way, the curvature and affine connection blow up
at CH but the metric (in suitable coordinates) does not.

(Parenthetically, it is entertaining and instructive to note that the gravita-
tional effects near CH can be simulated rather well by a simple (though exotic)
Newtonian model [10]. Imagine a "planet" whose radius ro is the same as CH,
whose mass is infinite and whose external gravity is screened by an "atmosphere"
of equal and opposite mass. Approaching the planetary surface the negative at-

mospheric density p(r) is assumed to grow like

p(r) - -(In, Ar)-P(, Ar) -2

(compare (11)) as Ar =_ (r - ro) -+ 0- . It is then easy to check, for example,
that the exterior Newtonian potential remains bounded for all r > ro, and that

falling meteorites and spacecraft are not tidally disrupted before they actually
reach the surface.)
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Not only are cumulative tidal effects weak near CH; the intrinsic 3-geometry
of this lightlike hypersurface is also only weakly affected. For a spherical horizon,
the 3-geometry is completely defined by the evolution of its area, and this is

determined by the transverse (i.e. out-) flux focussing its generators. Since the

outflux is not blueshifted, CH contracts only slowly, finally tapering to a strong
spacelike singularity when its area becomes zero (Figure 1).

4 Mass inflation: a simple mechanical model

The phenomena near CH are not familiar from everyday laboratory practice,
and it is useful to have at hand the simplest example that conveys the essence

of what is happening.
Our example will schematically model the infalling and outgoing radiation

near CH as a concentric pair of thin lightlike shells. But first a general remark

on the dynamics of a (timelike) spherical shell.

Consider a shell of radius r = R(-r), a function of proper time -r, moving
in the field of an internal distribution of gravitational (i.e. Schwarzschild) mass

m-. Both m- and the exterior Schwarzschild mass m+ are constant. The shell's

proper mass M(7-) satisfies

dM + Pd(47rR2) = 0

(It is conserved if the surface pressure P = 0.) The relation

2m-
j,2

1/2 1 M2 dR
M+ - M_ = M 1 - + - -- i? =_

R 2 R dr

(whose derivation is sketched in Chap. 17, Section 8), expresses the total con-

served, gravitating mass m+ - m- of the shell as a sum of four terms (when
the square root is expanded to first order): the rest-mass M, the kinetic en-

ergy !M, 2, the mutual potential energy -Mm-/R and a self-potential energy2
_1M2IR.

The one essential point to note is that (at least in this way of formulating
the dynamics) the "potential energy" (in general a mutual, unlocalized property
shared by a pair of bodies) here contributes to the gravitating mass of the outer

body: it is a binding energy.
There are circumstances in which the outer body can be released from its

gravitational binding, with a consequent increase of its gravitating mass. This

provides an intuitive understanding of mass inflation. Consider a pair of massive
thin spherical shells, one moving inwards, the other outwards, in a Reissner-

Nordstr6m!spacetime with central charge e. Let us assume that the shells are

transparent and simply pass through each other when they cross at radius ro. At
this moment, their mutual potential energy, of order -Minm.ut/ro, is suddenly
transferred from the contracting to the expanding shell, resulting in a redistri-

bution of their masses and an increase of the ambient Schwarzschild mass in the

space between them.
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This is illustrated most simply and graphically if both shells are made of

light. Their histories divide the spacetime into four sectors A,- I
D according

to the scheme

in' out,

out in

The metric in each of these sectors has the Reissner-Nordstr,5m form

2
dr2

2 02 t2d
r)
+ r d - f (r)ds =

7-(
2 2f (r) -- 1 - 2m/r + e /r (14)

but with different masses MA, -MD. Conservation of energy at the moment
of crossing is expressed by

fA(ro)fB(ro) = fc(ro)fD(ro), (15)

first noted in 1985 by Dray and 't Hooft and by Redmount, and called the DTR
relation. It can be considerably generalized [11]. (A simple derivation of (15) is

appended as an exercise to this Chapter.)
Equation (15) can be re-expressed in a number of equivalent forms; for ex-

ample,

MA - MD fD MC - MA fC
MC - MB fB '

MB - MD fB

which translates to

Min = (fD/fB)Min i MOut = (k/fB)Mout - (16)

Conservation of the total energy follows directly from (16) and (14):

'Min + Molut = Min + Mout -

As already indicated, the shells may be considered to represent schematically
the infalling and outgoing fluxes inside a spherical charged hole. If crossing occurs
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just outside the Cauchy horizon of sector B, so that fB(ro) is negative and

numerically very small, fD(ro) negative and fc(ro) positive (since MC   'MB -

'Min is significantly smaller than MB) ,
it follows from (16) that mi'. and IMA are

very much larger than Min and MB - (The new mass mout is then correspondingly
negative, signifying that the "outgoing" shell is now burdened with so much

binding energy that it can no longer reach infinity, i.e., it is trapped inside the

hole and is now actually contracting.)
This represents a wholesale conversion of gravitational energy into material

(kinetic) energy of infall. The inner horizon of a black hole (like a closed universe

in cosmological inflation) is a bottomless well of gravitational energy.

5 Is the spherical picture generic?

The spherical analysis described in Sec. 3 has led us to the tentative picture of

a black hole's interior summarized in Figure 1: the final strong, spacelike sin-

gularity has a weaker lightlike precursor extending backwards along the Cauchy
horizon and characterized by mass inflation.

It is now time to take leave of toy models and confront the question of how
far any spherical model can be trusted to provide a representative picture of
the real conditions inside a generic rotating black hole. From the beginning this

question aroused understandable skepticism, and the issue remains unsettled.
But some of the early doubts have been clarified and laid to rest.

Even in the spherical case, an early numerical study of scalar wave tails
absorbed by a charged hole suggested that CH is destroyed and that the r = 0

spacelike singularity is all-enveloping. But analytical work [9] and more refined
numerics [12] have not confirmed this suggestion.

More serious questions arise when the restriction of spherical symmetry is

given up. It has been widely felt that lightlike singularities cannot be generic.
The argument runs something like this. We already know a class of singulari-
ties which are functionally generic in the sense that the solutions depend on 8

physically arbitrary functions of 3 variables (6 components of intrinsic metric
and 6 components of extrinsic curvature for an initial spatial hypersurface, less
4 coordinate degrees of freedom. Imposing definite (e.g. vacuum) field equations
would subject these 8 functions to 4 initial-value constraints.) These are the

BKL (Belinskii-Khalatnikov-Lifshitz) or "mixmaster" chaotic oscillatory singu-
larities [13]. Now, the BKL singularities are spacelike, and - presumably - they
exhaust the set of generic singularities. If that is so, then lightlike singularities
must be less generic, and could not develop from generic initial data. A generic
perturbation should drive any such lightlike singularity into a spacelike one.

There is a flaw in this argument, and it was pinpointed by Ori and Flanagan
[14]. They showed that it was actually possible to construct a generic class of weak

lightlike singularities. And one should indeed expect intuitively that the Einstein

equations (which are quasi-linear) should propagate generic weak discontinuities

and mild singularities along characteristic (i.e., lightlike) hypersurfaces.
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It is thus not possible to rule out the presence of weak lightlike singularities
inside black holes merely on the grounds that they are non-generic. Of course,
this should not be construed as a proof that such singularities actually do occur

in generic black holes!

6 Covariant double-null dynamics

To enter into technical details concerning the latest non-spherical analyses [15]
of black hole interiors would be beyond the scope of these introductory lectures.
But I shall outline the general formalism [16] employed in these studies, because

it is a versatile technique, useful in a variety of situations where the physics
singles out particular lightlike surfaces.

This is a (2 + 2)-embedding formalism, adapted to a double foliation of space-
time by a net of two intersecting families of lightlike hypersurfaces. It yields a

simple and geometrically transparent decomposition of the Einstein field equa-
tions.

A number of such formalism (referenced in [16]) have been developed since

1980. The version I shall present here has the feature that it is two-dimensionally
covariant and thus very compact.

To accustom ourselves to the notation, let us begin with a r6sum6 of the
basics of the familiar ADM (3 + l)-dimensional decomposition. This involves a

foliation by spacelike hypersurfaces t const., with parametric equations

x' = x' ( ', t) (a,,3 ... 0, - .. 3; a, b
...

= 1, 2,3) .

The basis vectors e(a) tangent to a hypersurface and associated with the intrinsic
coordinates  a have 4-dimensional components e( =,qxa/,9 a.

aa)
The basic geometrical entities associated with a hypersurface are its intrinsic

metric and extrinsic curvature, defined by

-

a eoab = g,,3e (a) Kab = (V,n,3)e(a)eg -- e (a) - e (b) (b) I (a (b) I

where n' is the unit timelike normal: n - n 1.

The "shift" Sa, defined by

Sa = e(a),qxalat = -n',9 a/i9xa, e(a) gabe(b)a

is a measure of how much one has to veer off the normal in order to join two

points on neighboring hypersurfaces having the same intrinsic coordinates  a,
according to the schemes illustrated in the sketch.

(Traditionally, sa is denoted Na.)
An arbitrary 4-dimensional displacement dx' can be decomposed as

dx' = e ('a) (d a + sa dt) + Nn'dt
, (17)
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t+dt

a

where the "lapse" N = -n,,,c9x'/i9t- From (17) follows at once the standard
ADM decomposition of the 4-metric:

dS2 = g,,Odx'dxO = 9,b(d ' + s'dt)(d b + Sbdt) - N2dt2

However, most of this becomes useless if a hypersurface t = const. is lightlike.
The intrinsic metric gab is now degenerate (so there is no inverse gab) ,

and Kab
provides no extrinsic information because n' is now tangent to the hypersurface.

For a non-degenerate treatment of the lightlike case, one is forced to fall
back on a (2 + 2)-decomposition. We shall suppose that we are given a double
foliation of spacetime by a net of two intersecting families of lightlike hypersur-
faces ZO (uO = const.) and Z' (u' = const.). The condition that the gradients
VuO, Vu' are non-parallel future lightlike vectors is expressed by

VUA. VUB = e-A77AB (A, B ...
= 0, 1)

for some scalar function A(x'), where the matrix

71
AB

=

0-1
= 77AB-1 0

is used to raise and lower upper-case indices. The normal generator (A) of ZA'I

is parallel to VuA
,
and it is convenient to normalize it as l(A) = eAvuA

Each pair of hypersurfaces ZO and Z' intersect in a 2-surface S. We assign in-
trinsic coordinates 0' (a, b

...
= 2, 3) to these surfaces such that their parametric

equations are smooth functions

X" = X, (UA, 0a) . (18)

The basis vectors e(a) tangent to S and its intrinsic 2-metric are then defined by

,ce = qXcelaoa, gab = e(a) - e(b)(a)

Associated with the two normals I(A) to S there are two shift vectors

,,a = e(a),9Xck/19UA = _p 90alaXce .A 01 (A)
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An arbitrary small displacement dxl in spacetime can now be resolved into its

normal and tangential parts:

dx' = 1('A duA + e(̀ a) 00' + sAduA) .(A) (a A

It follows that the spacetime metric is decomposable as

d'92 = g,,3dx'dx,3 = e
A 'qABduAdUB + gab (doa + Sa dUA) (dO6 + 8b dUB)A B

The two normals also define two extrinsic curvatures

KAab - (N7,81(A)o,) e')eo(a (b)

which are easily shown to be symmetric in a, b. (A certain scale-arbitrariness is

inherent in this definition, since we are free to rescale the null vectors l(A)-)
The Lie bracket of 1(0) and 1(1) contains further geometrical information about

the double foliation. One finds

[I(B) i 1(A)] - EAB ae(a) (19)

where

a AB Sa _ Sb Sa((9B A B A; b)

The semi-colon indicates 2-dimensional covariant differentiation associated with

the metric gab, and 1EAB is the 2-dimensional permutation symbol.
From (19) we can read off the geometrical significance of the qWiSti) W

a

The curves tangent to the generators 1(0), 1(1) mesh together to form 2-surfaces

(orthogonal to the surface S) if and only if Wa = 0. If this were true, it would be

consistent to allow the coordinates 0ato be dragged along both sets of generators,
and thus to gauge both shift vectors to zero.

The 2-dimensionally invariant operator associated with differentiation along
the normal direction 1(A) is denoted by DA. Acting on any 2-dimensional geo-
metrical object Xa DA acts as follows:

DAXa.... aA - LSd Xa ...

b.. A) b...

Here, 09A is the partial derivative with respect to UA and Ld the 2-dimensional
A

Lie derivative with respect to the 2-vector 8d. For exampleA

DAga6 = i9Aga6 - 2-SA(a;b) = 2KAab

Geometrically, DAXa... is the projection onto S of the 4-dimensional Lie deriva-
6...

tive with respect to 1'(A) of the equivalent tangential 4-tensor

X0'. Xa ... e' )e
(b)

0 6... (a 0 * -
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The objects KAab, Wa and DA are all simple projections onto S of 4-di-

mensional geometrical objects. Consequently they transform very simply under

2-dimensional coordinate transformations. Under the transformation

0. ____> 0.' = fa (ob,uA) (20)

(which leaves UA and hence the surfaces ZA and S unchanged), gabi Wa and

KAab transform cogrediently with

e (a) -+ e r( = e(b) gob/,goal .(a)

On the other hand, the shift vectors Sa will undergo a more complicated gauge-A

like transformation, arising from the u-dependence in (20).
(To avoid any possible misunderstanding, I should perhaps stress that this

formalism is covariant under two completely independent groups of transforma-
tions. In the parametric equations (18), the 4-dimensional coordinates x1 and the

2-dimensional coordinates oa can be transformed independently of each other.

In this sense, gab is at the same time a "2-tensor" and a "4-scalar".)
We now already have sufficient geometrical groundwork to display the simple

form the Ricci components take in the double-null formalism (tetrad components
are denoted by, e.g. RaA = R,,ae')1'3 )):(a (A

(4) Rab (2)Rgab - e-A(DA + KA)KA
2 ab

+2e-)'Kd KA 1e-2A 1
A(a b)d

-

2
WaWb - A;ab - 2/\,aA,b

RAB = -D(A KB) - KAabKab
+ K(A DB B)

77AB [(DE + KE)DEA - e-XaWa + (e\ );a
2 a

RAa = Kb KA19aAAa;b
- i9aKA - 219aDAA + 2

+ 1EABe-\ [(DB + KB )LOa - LJaDB'X]
2

where (2)R is the curvature scalar associated with the 2-metric gab, and KA
KaAa*

The economy and geometrical transparency of these formulae are self-evident.

In particular, the shift vectors, which are largely an artifact of the choice of

coordinates oa, make no explicit appearance.

Double-null formalism are of particular value in contexts where lightlike hy-
persurfaces are prominent: the characteristic initial-value problem (analytical
and numerical), the dynamics of horizons, gravitational radiation, Planck-energy
collisions and light-cone quantization.
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7 Interior of a generic rotating black hole: general
remarks

The task of piecing together a comprehensive picture of the generic black hole

interior poses, even in its classical phases, a formidable challenge on which work

is still in progress [3, 4, 16, 17, 18]. All I can offer here are some brief general
comments.

One expects the essential physics to be captured by the following prototypical
example. Given an initially stationary (i.e., Kerr) black hole, introduce near the

event horizon r = r+ an initially small vacuum perturbation 6g,,3 representing an
ingoing packet of gravitational waves decaying with advanced time v according
to Price's power law:

4+1Jg - h(O,  0+)V_ 2 (r ;: -, r+, v -- oo) (21)

The challenge is to trace the classical evolution of this perturbation - includ-

ing all nonlinear (Le, back-reaction) effects - forward in time, and downward
into the hole, all the way to the Cauchy horizon CH, using Einstein's vacuum

equations.

v H4 2

E

TIME
H,

U

C

Cauchy

Singularity Horizon

TIME

E tven
Potential

Horizon
barrier

Fig. 2 View of black hole interior (not compactified, one angular variable suppressed).
The figure shows future light-cones, and a stream of initially infalling radiation, par-

tially scattered off the potential barrier between the event and Cauchy horizons, with
the unscattered portion accumulating along the Cauchy horizon. This representation
reveals more clearly than Figure I that most of the scattering takes place in a layer
well separated from the belt of large blueshift near CH.

In (21), it is important to note that the initial amplitude h is regular only
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when expressed in terms of the Eddington-Kerr advanced angular coordinate  0+

[19], not the Boyer-Lindquist coordinate W - the two coordinates are related

by an r-dependent winding translation which becomes singular at horizons. The

advanced angle W+ is constant along the ingoing principal null rays of the Kerr

geometry and along generators of the event and Cauchy horizons.

On a fixed Kerr background, a test wave packet sent in at a late advanced

time v, will propagate inwards with constant angular momentum but angular
velocity increasing because of frame-dragging. After scattering from the potential
barrier between the horizons (see Figure 1), its transmitted part will edge up

to CH as highly blueshifted "gravitons" moving parallel to its generators (since
that is the only non-spacelike direction tangent to a lightlike surface). The flux

is blueshifted by a factor e2KOv, ,
where r,0, the surface gravity of the Kerr inner

horizon, is a constant (independent of latitude), even though CH is nonspherical.
The back-reaction is to be determined by formulating a characteristic initial-

value problem. Initial data are set on an intersecting pair of lightlike hypersur-
faces Z' (u=const.) and Ev (v=const.), with Z1 pointing into the hole (Figure
3). Data on Z' can be trivially fixed by placing it wholly in the initially station-

ary (pure Kerr) sector of the geometry.
The correct formulation has Zu just above or coincident with the event hori-

zon EH (Figure 3), and initial data on it specified as the Kerr geometry pertur-
bated by an infalling wave tail like (21).

These initial data now evolve in accordance with the vacuum field equations.
A broadbrush picture of the evolution can be gleaned by dividing it schematically
into four stages, (a)-(d), as indicated in Figure 3. We follow a small-amplitude
wave packet which originates on a segment of the event horizon at some late

advanced time v = vl:

(a) The perturbation propagates inward at constant advanced time. Part of it is

scattered "outward" and crosses CH transversely. The remainder continues

in free propagation and descent until eventually it sidles in close to CH. This

phase, (a), ends when the wave has penetrated so deep into the environs of

CH that blueshift and back-reaction are becoming appreciable. Up to this

point, the disturbance can be treated, to a good approximation, as a test

field propagating on a fixed Kerr background.

(b) With further descent at constant advanced time and deeper immersion into

this high-blueshift layer, there is a transition from incipient to extreme

blueshift, and to a third regime, (c), of fully developed back-reaction.

(c) This appears to be the most extended part of the evolution. Experience with

the spherical and planar [20] cases, as well as the general analyses [16, 17, 18],
suggest that this strong blueshift regime is relatively stable, changing with

retarded time on the timescale associated with the slow shrinkage and de-

formation of CH due to the (weak and unblueshifted) transverse flux arising
from backscatter.
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ics

strong C
singularity

mass inflation"

blueshift = e'O'

Ko -- surf. grav.
-of Kerr inner horizon const.

0,

oz l 4 
01

+
AK-

0

-0
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lVP

initial data for

characteristic IVP

schould be set here

Fig. 3 From stages, (a)-(d), in the evolution of a wave-packet entering a black hole at

the event horizon EH. This is a Penrose conformal map similar to Figure 1.

On CH itself- if one may loosely speak of this (mild) singularity as part of

the manifold - regime (c) extends backwards, though steadily weakening,
for the entire (endless) past history, as Figure 3 shows more clearly.

(d) Ultimately the generators of CH, focused by the transverse flux, form caus-

tics and the Cauchy horizon breaks up, terminating in a strong singularity,
presumably spacelike and (classically) of BKL mixmaster type.

Phases (b) and (d) are the most difficult to analyze and least understood. But

even (a) presents problems, because the wave equation on a Kerr background
is separable only for a special (harmonic or exponential) time-dependence, not

well suited for power-law tails.

The detailed studies to date [16, 17, 18, 19] have been largely restricted to

a simplified formulation which allows one to bypass the transition regime (b).
In this "poor man's version", the initial surface Z', whose proper placing is

along or above EH, is taken to lie inside the hole (Figure 3). It now intersects

CH, and its future end is therefore immersed in a layer of strong blueshift and
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back-reaction where initial data are not known a priori.
One must then resort to the strategy of making a plausible guess about the

initial conditions in this layer, and then check that this guess is at least self-

consistent by showing that the general character of the assumed conditions near

CH is preserved by the evolution. In this way, it has been possible to put together
a fairly plausible description of phase (c) as a self-sustaining, mildly singular,
large-blueshift regime. But the evidence that this is what must emerge from

phases (a) and (b) still falls well short of being compelling.
The most complete studies along these lines - by Brady and Chambers [17]

and Brady, Droz and Morsink [16], building in part on earlier work by Ori [18] -
employ the double-null formalism described in the previous section (or an earlier

variant thereof due to Sean Hayward) to analyze the characteristic initial-value

problem.
These investigations lead to a self-consistent description of phase (c) which

is qualitatively similar to the spherical (Sec.3) and planar [20] pictures: a locally
weak singularity along CH, characterized by mass inflation now overlaid by an

imploding gravitational shock. The metric of two-dimensional sections of CH is

not affected by blueshift and varies slowly; the transverse 2-metric orthogonal to

these sections is exponentially compressed, i.e. the exponent A in (21) decreases

linearly with advanced time:

A = -rov + (less divergent terms) (v - oo) .

It is a consequence of the Einstein equations and the assumed initial regu-

larity of the intrinsic geometry of CH in phase (c) that ro must be a constant
- a condition which already appears as a constraint that one has to impose on

the initial data along Z' in the "poor man's" formulation. The constancy of the

unperturbed inner horizon's surface gravity provides a hint that this condition
does indeed emerge from phase (a). But the actual outcome will depend on the

unexplored question of how the geometry evolves through the transition phase
(b).

8 Summary and conclusion

Analytical and numerical studies have provided us with a fairly complete de-

scription of the effect of wave tails on the interior of a spherical (charged) black

hole. In the nonspherical (rotating) case, partial analyses and general arguments
suggest a qualitatively similar picture, but the evidence for this is still fragmen-
tary.

Nonspinning, uncharged collapse produces an all-enveloping, crushing, space-
like singularity inside the hole. In the presence of spin or charge this picture
appears to be modified and softened. Only a finite segment of the final space-
like singularity survives; it is joined to an infinitely long and milder lightlike
precursor.
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Knowledge of the classical geometry at late advanced times near the Cauchy
horizon is a launchpad which provides initial conditions for the subsequent quan-
tum phase of evolution. Preliminary explorations of this quantum phase, using
spherical models [10, 21], lead to indeterminacies which will not be resolved un-

til we have a manageable quantum theory of gravity. We have only charted a

coastline; exploration of the hinterland is a task for the next century.
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Quantum Fields near Black Holes

Andreas Wipf

Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universitat Jena,
Max-Wien-Platz 1, D-07743 Jena, Germany

1 Introduction

In the theory of quantum fields on curved space-times one considers gravity
as a classical background and investigates quantum fields propagating on this

background. The structure of spacetime is described by a manifold M with

metric g,,,. Because of the large difference between the Planck scale (10-33CM)
and scales relevant for the present standard model ( : 10-17CM) the range of

validity of this approximation should include a wide variety of interesting phe-
nomena, such as particle creation near a black hole with Schwarzschild radius

much greater than the Planck length.
The difficulties in the transition from flat to curved spacetime lie in the ab-

sence of the notion of global inertial observers or of Poincar6 transformations

which underlie the concept of particles in Minkowski spacetime. In flat spacetime,
Poincar6 symmetry is used to pick out a preferred irreducible representation of

the canonical commutation relations. This is achieved by selecting an invari-

ant vacuum state and hence a particle notion. In a general curved spacetime
there does not appear to be any preferred concept of particles. If one accepts
that quantum field theory on general curved spacetime is a quantum theory of

fields, not particles, then the existence of global inertial observers is irrelevant

for the formulation of the theory. For linear fields a satisfactory theory can be

constructed. Recently Brunelli and Fredenhagen [1] extended the Epstein-Glaser
scheme to curved space-times (generalising an earlier attempt by Bunch [2]) and

proved perturbative renormalizability of A04.
The framework and structure of Quantum field theory in curved space-times

emerged from Parker's analysis of particle creation in the very early universe [3].
The theory received enormous impetus from Hawking's discovery that black holes

radiate as black bodies due to particle creation [4]. A comprehensive summary
of the work can be found in the books [5].

2 Quantum Fields in Curved Spacetime

In a general spacetime no analogue of a 'positive frequency subspace' is avail-

able and as a consequence the states of the quantum field will not possess a

physically meaningful particle interpretation. In addition, there are spacetimes,
e.g. those with time-like singularities, in which solutions of the wave equation
cannot be characterised by their initial values. The conditions of global hyper-
bolocity of (M, g,,) excludes such 'pathological' spacetimes and ensures that

F.W. Hehl, C. Kiefer, R.J.K. Metzler (Eds.): LNP 514, pp. 385 - 415, 1998
© Springer-Verlag Berlin Heidelberg 1998
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the field equations have a well posed initial value formulation. Let E C M be a

hypersurface whose points cannot be joined by time-like curves. We define the

domain of dependence of Z by

D(Z) = {p E Mlevery inextendible causal curve through p intersects Z1.

If D (Z) = M, Z is called a Cauchy surface for the spacetime and M is called

globally hyperbolic. Globally hyperbolic spacetimes can be foliated by a one-

parameter family of smooth Cauchy surfaces Zt, i.e. a smooth 'time coordinate'

t can be chosen on M such that each surface of constant t is a Cauchy surface

[6]. There is a well posed initial value problem for linear wave equations [7]. For

example, given smooth initial data 00,  0, then there exists a unique solution

of the Klein-Gordon equation

11go + M20 = 0, 9 11W 9911va.)

which is smooth on all of M, such that on Z we have 0 = 00 and n"V,,o
 o, where & is the unit future-directed normal to Z. In addition, 0 varies

continuously with the initial data.

For the phase-space formulation we slice M by space-like Cauchy surfaces Et
and introduce unit normal vector fields n" to Zt. The spacetime metric g1,v
induces a spatial metric hLv on each Et by the formula

giuv = n/Inv - h,4v.

Let t" be a 'time evolution' vector field on M satisfying tiV,,t = 1. We decom-

pose it into its parts normal and tangential to Zt,

t" = NnA + N",

where we have defined the lapse function N and the shift vector N" tangential
to the Zt. Now we introduce adapted coordinates x,4 = (t, x'), i = 1, 2, 3 with

tAV,,x' = 0, so that tAV,, = at and N4,9,, = N'c9i. The metric coefficients in

this coordinate system are

goo = g(c9t, i9t) = N2- N'Ni and goi = g(at,,9i) -Ni,

where Ni = hijNi, so that

ds2= (Ndt)2 - hij (N'dt + dx') (N3 dt + dX3)

(,90) 2
= , (,900 - N' 9i0)2 - 0i9i 0,9j 0.j _2

The determinant g of the 4-metric is related to the determinant h of the 3-metric

as g = -N2h. Inserting these results into the Klein-Gordon action

S = Ldt =
1 f q (gtiv 19,, OCIV0 _ M202 d4 X,f 2
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one obtains for the momentum density, 7r, conjugate to the configuration variable

on Et

OL Vrh
,7r --

.
-_ - (0 - N'o9i0) = V-h (n4a, 0).

,90 N

A point in classical phase space consists of the specification of functions (0,,rr)
on a Cauchy surface. By the result of Hawking and Ellis[7], smooth (0, 7r) give
rise to a unique solution to (1). The space of solutions is independent on the

choice of the Cauchy surface.

For two (complex) solutions of the Klein-Gordon equation the inner product

if (iiin"VpU2 - (nI'VfL1)U2) Vh d3X fr d3X(Uli U2) f (fL172 - 7rIU2)

defines a natural symplectic structure. Natural means, that (u, , U2) is indepen-
dent of the choice of Z. This inner product is not positive definite. Let us intro-

duce a complete set of conjugate pairs of solutions (Uk i iik) of the Klein-Gordon

equation' satisfying the following ortho-normality conditions

(Uk , UkI) = J(k, V) =: (iik i ftkl) - -6(k, k') and (Uk 7'dkl) = 0-

There will be an infinity of such sets. Now we expand the field operator in terms

of these modes:

dl-i(k) akUk +at ftk and 7r dl-L(k) ak7rk +at frkf k f k

so that

(Uk,O) =ak and (iik,O) = -atk

By using the completeness of the Uk and the canonical commutation relations

one can show that the operator-valued coefficients (ak, at) satisfy the usual com-
k

mutation relations

[ak, ak' [at, at,] = 0 and [ak, at,] = J(k, V). (2)k k k

We choose the Hilbert space W to be the Fock space built from a 'vacuum' state

S?u satisfying

ak flu 0 for all k, (f2u, P.) 1 (3)

The 'vectors' f2u, at comprise a basis of W. The scalar product given by
k

(2,3) is positive-definite.

' the k are any labels, not necessarily the momentum
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If (vp, Vp) is a second set of basis functions, we may as well expand the field

operator in terms of this set

f dy(p) (bpvp + bt VpP

The second set will be linearly related to the first one by

vp f dp(k) ((Uk, Vp)Uk - (fLki Vp)flk) f du(k) (a(p, k)Uk + 0(p, k)flk

The inverse transformation reads

Uk = f dM(p) (vpa (p, k) - Dp,3 (p, k)

As a consequence, the Bogolubov-coefficients are related by

aat - 0,3t = 1 and a,3t -,3at = 0. (4)

If the 0(k, p) vanish, then the 'vacuum' is left unchanged, but if they do not, we

have a nontrivial Bogolubov transformation

(0 3 b a

(a at) = (b bt)  ,3 6
(5)e)

and
bt a at

which mixes the annihilation and creations operators. If one defines a Fock space
and a 'vacuum' corresponding to the first mode expansion, akf2u = 0, then the

expectation of the number operator bt b defined with respect to the second mode
P P

expansion is

(S?u, bt b S?u) djL (k) 10 (p, k) 12.P P f
That is, the old vacuum contains new particles. It may even contain an infinite
number of new particles, in which case the two Fock spaces cannot be related

by a unitary transformation.

Stationary and static spacetimes. A spacetime is stationary if there

exist coordinates for which the metric is time-independent. This property holds
iff spacetime admits a time-like Killing field K = KAO, and hence a natural
choice for the mode functions Uk: We may scale K such that the Killing time t is

the proper time measured by at least one comoving clock. Now we may choose

as basis functions Uk the eigenfunctions of the Lie derivative,

iLKUk = w(k)Uk and iLKfLk = -w(k)fik,

where the w(k) > 0 are constant. The w(k) are the frequencies relative to the

particular comoving clock and the Uk and fLk are the positive and negative fre-

quency solutions, respectively. Now the construction of the vacuum and Fock

space is done as described above.



19. Quantum Fields near Black Holes 389

In a static spacetime, K is everywhere orthogonal to a family of hyper-surfaces
and hence satisfies the Frobenius condition kAdk = 0, k=K,,dx1'.Wemay
introduce adapted coordinates: t along the congruence (K = (9t) and x' in one

hypersurface such that the metric is time-independent and the shift vector Ni
vanishes,

(gl")
N2 (Xi) 0

0 -hij (Xi)

As modes we use

Uk e-iw(k)t Ok (Xi)
V2-w(k)

which diagonalise LK and for which the Klein-Gordon equation simplifies to

N
i3*aj) + N2M2 L,,2KOk Ti9i (Nv/hh

h ) Ok kOk.

Since nAO, = N-1c9t, the inner product of two mode functions is

(Ul) U2) =
W1 + L02 ei(UJ1-LU2)t  102 N-Yhd3X.
2V/w__j-L,)2 f

-

(01,102)2

The elliptic operator IC is symmetric with respect to the L2 scalar product
(-,-)2 and may be diagonalised. Its positive eigenvalues are the W2(k) and its

eigenfunctions form a complete 'orthonormal' set on Z, (Ok,Ok1)2 = 5(k,k').
It follows then that the Uk form a complete set with the properties discussed

earlier.

Ashtekar and Magnon [8] and Kay [9] gave a rigorous construction of the

Hilbert space and Hamiltonian in a stationary spacetime. They started with a

conserved positive scalar product (., .)E

(011 02)E f T4v (011 02)Kvn/-\/-hd3 X,
E

where the bilinear-form on the space of complex solutions is defined by the metric

Istress tensor7:

T/,V(O, 0) =

1 (OtIp 7p7v +Otlv 0111 _g/1V(VOtVO _ M20to)
2

This 'stress tensor' is symmetric and conserved and hence Vj,(T"vKv) = 0. It

follows that the norm is invariant under the time-translation map

a* (0) = 0 o at or (a* (0)) (x) = 0 (at (x)) ,t t
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generated by the Killing field K. When completing the space of complex solutions

in the 'energy-norm' one gets a complex (auxiliary) Hilbert space k The time

translation map extends to 'fi and defines a one-parameter unitary group

ihta* = e self-adjoint.t

Note, that from the definition of the Lie derivative,

d
(at;o) lt=o = -LKO = ihO.

dt

The conserved inner product (011 02) can be bounded by the energy norm and

hence extends to a quadratic form on li. Let fi+ C fi be the positive spectral
subspace in the spectral decomposition of h and let P be the projection map
P : fi - ? +. For all real solutions we may now define the scalar product as the

inner product of the projected solutions, which are complex. The one-particle
Hilbert space W is just the completion of the space ? + of 'positive frequency
solutions' in the Klein-Gordon inner product.
Hadamard states. For a black hole the global Killing field is not everywhere
time-like. One may exclude the non-time-like region from spacetime which cor-

responds to the imposition of boundary conditions. One may also try to retain

this region but attempt to define a meaningful vacuum by invoking physical ar-

guments. In general spacetimes there is no Killing vector at all. One probably
has to give up the particle picture in this generic situation.

In (globally hyperbolic) spacetimes without any symmetry one can still con-

struct a well-defined Fock space over a quasifree vacuum state, provided that

the two-point functions satisfies the so-called Hadamard condition. Hadamard

states are states, for which the two-point function has the following singularity
structure

W (0(X) 0(Y)) :--:: W2 (X i Y) :::::::

U
+ V 109 0' + W) (6)

a

where a(x, y) is the square of the geodesic distance of x and y and u, v, w are

smooth functions on M. It has been shown that if W2 has the Hadamard singu-
larity structure in a neighbourhood of a Cauchy surface, then it has this form

everywhere [11]. To show that, one uses that W2 satisfies the wave equation. This

result can then be used to show that on a globally hyperbolic spacetime there is

a wide class of states whose two-point functions have the Hadamard singularity
structure.

The two-point function W2 must be positive,

UJWHOM) = f dy(x) dl-i (y) 1(X)W2 (X i Y) f (Y) >_ 0
7

and must obey the Klein-Gordon equation. These requirements determine u and

v uniquely and put stringent conditions on the form of w. In a globally hyperbolic
spacetime there are unique retarded and advanced Green functions

'Aret (X, Y) , 'Aadv (X, Y) with SUPP(Aret) = f (X, Y); X E J+ (Y) 1,
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where J+ (y) is the causal future of y. The Feynman Green function is related

to W2 and the advanced Green function as

i 16F (X) Y) W2 (X i Y) + 6
adv (X) Y) -

Since  Aadv is unique, the ambiguities Of  AF are the same as those Of w2. The

propagator function

i,6 (X) Y) (X) 1 0(Y) ret (X) Y) - 'Aadv (X i Y)

determines the antisymmetric part Of W21

W2 (X i Y) - W2 (Y i X) i 1 1 (X i Y) i

so that this part is without ambiguities. For a scalar field without self-interaction

we expect that

n

W (O(Xl) ... O(X2n-1)) ::-- 01 W (O(Xl) ... O(X2n)) E 11 W (0(Xi1J0(Xik)) -

il<i2 ... <i.n k=1
il <i2 ... < -7 n

A state w fulfilling these conditions is called quasifree. Now one can show that

any choice Of W2 (X 7 Y) fulfilling the properties listed above gives rise to a well-

defined Fock space 37 = EDTn over a quasifree vacuum state. The scalar product
on the 'n-particle subspace' Tn in

)7 = 1 b Ej E) (A4 n) $11mm lArlcompletionn , n-0,1,2,..., (7)

where D(Mn ) denotes the smooth symmetric functions on M x x M (n
factors) with compact support, is

n

(011 02) dl-t(xl,--iXn)Yli--iYn)IIW2(XiiYi) l(Xli--,Xn)02(Yli..)Yn),
i=1

where dp(xl, X2, dp(xl)dp(X2) ....
Since W2 satisfies the wave equation, the

functions in the image of F1 + m2have zero norm. The set of zero-norm states M
has been divided out in order to end up with a positive definite Hilbert space.
The smeared field operator is now defined in the usual way: 0(f a(f + a(l),
where

(a (1) V))
n
(x 1, .., xn) = Vn-_+1fdl-L(x, Y)W2 (X, Y) f (X)'On+l (Yi X1, - - i Xn)

1
n

(a(f) f0n(X11 --, Xn) = Vn-- f(Xk)V)n-l(Xli --iXk-1iXk+1--iXn), n > 0

k=1

and (a(f)tV))o - 0. It is now easy to see that W2 is just the Wightman function

of 0 in the vacuum state  bo: U-12 (X i Y) = (00 1 0(X)0(Y)'00) -
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3 The Unruh Effect

We may ask the question how quantum fluctuations appear to an accelerating
observer? In particular, if the observer was carrying with him a robust detector,
what would this detector register? If the motion of the observer undergoing
constant (proper) acceleration is confined to the X3 axis, then the world line is

a hyperbola in the xo, x3 plane with asymptotics x3= xo. These asymptotics
are event horizons for the accelerated observer. To find a natural comoving
frame we consider a family of accelerating observers, one for each hyperbola with

asymptotics x
3
= xo. The coordinate system is then the comoving one in which

along each hyperbola the space coordinate is constant while the time coordinate

-r is proportional to the proper time as measured from an initial instant xo = 0

in some inertial frame. The world lines of the uniformly accelerated particles are

the orbits of one-parameter group of Lorentz boost isometries in the 3-direction:

X0 sinh rt "t 0
4)

01
X3

= P cosh rit
e'

P
P V

=

10
'

In the comoving coordinates (t, x1, x2, P)

ds2
= K2P2dt2 - dP2 - (dxl )2 - (dX2)2.

so that the proper time along a hyperbola p =const is rpt. The orbits are tan-

gential to the Killing field

K = 9t = r, (X3,90+ X0(93) with (K, K) = (rp)' = goo. (8)

Some typical orbits are depicted in figure (1). Since the proper acceleration on

the orbit with (K, K) = I or p = 11r. is r,, it is conventional to view the orbits
of K as corresponding to a family of observers associated with an observer who
accelerates uniformly with acceleration a = n.

The coordinate system t, p covers the Rindler wedge R on which K is time-like

future directed. The boundary H+ and H- of the wedge is given by p = 0

and appears as a Killing horizon, on which K becomes null. Beyond this event

horizon the Killing vector field becomes space-like in the regions F, P and time-

like past directed in L. The parameter n plays the role of the surface gravity.
To see that, we set r - 2M = p'18M in the Schwarzschild solution and linearise

the metric near the horizon r - 2M. One finds that

2 t2 P2 fl2ds P) 2d -d
2
d

4
2-di- Rindl-

spacetime 2-sphere of
radi- 1/2.

contains the line element of two-dimensional Rindler spacetime, where r, = 1/4M
is indeed the surface gravity of the Schwarzschild black hole.

Killing horizons and surface gravity. The notion of Killing horizons is rele-

vant for the Hawking radiation and the thermodynamics of black holes and can
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orbits of K

3

R

Fig. 1 A Rindler-observer sees only a quarter of Minkowski space

already be illustrated in Rindler spacetime. Let S(x) be a smooth function and
consider a family of hyper-surfaces S(x) = const. The vector fields normal to the

hyper-surfaces are

1 = g(X)(a1S)(9'4)

with arbitrary non-zero function g. If I is null, P = 0, for a particular hyper-
surface )V in the family, jV is said to be a null hypersurface. For example, the

normal vectors to the surfaces S = r - 2M - const in Schwarzschild spacetime
have norm

P - 929uvaAS,9"S = g2 1 _ 2M),
r

and the horizon at r = 2M is a null hypersurface.
Let M be a null hypersurface with normal 1. A vector t tangent to A( is char-
acterised by (t, 1) = 0. But since 12 = 0, the vector I is itself a tangent vector,
i.e.

JA =
dx4

where xl"(A) is a null curve on M.
dA '

Now one can show, that V1 PjAr - lt', which means that x4 (A) is a geodesic with

tangent 1. The function g can be chosen such that V11 = 0, i.e. so that A is an

affine parameter. A null hypersurface M is a Killing horizon of a Killing field K
if K is normal to M.

__O
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Let 1 be normal to M such that V11 - 0. Then, since on the Killing horizon

K fI for some function f, it follows that

VKK" = fVV, (fP) = fPlvl9v f = (VK log If I)K" =- r.K" on M. (9)

One can show, that the surface gravity r, = IVK logf2 is constant on orbits
2

of K. If r.  4 0, then Af is a bifurcate Killing horizon of K with bifurcation 2-

r2sphere B. In this non-degenerate case . is constant on Af. For example, for the

Killing field in Rindler spacetime (8) VKK = r.K on the Killing horizon and

the bifurcation 'sphere' is at p = 0. If M is a Killing horizon of K with surface

gravity r,, then it is also a Killing horizon of cK with surface gravity C2r, Thus

the surface gravity depends on the normalisation of K. For asymptotically flat

spacetimes there is the natural normalisation K2 _+ I and K future directed

as r -4 oo. With this normalisation the surface gravity is the acceleration of a

static particle near the horizon as measured at spatial infinity.
A Killing field is uniquely determined by its value and the value of its derivative

F ,, = V[,,K,] at any point p E M. At the bifurcation point p of a bifurcate

Killing horizon K vanishes and hence is determined by F ,, (p). In two dimensions

F
,,, (p) is unique up to scaling. The infinitesimal action of the isometries at

generated by K takes a vector vm at p into

LKVM = Fvv'. (10)

The nature of this map on Tp depends upon the signature of the metric. For

Riemannian signature it is an infinitesimal rotation and the orbits of at are closed

with a certain period. For Lorentz signature (10) is an infinitesimal Lorentz boost

and the orbits of at have the same structure as in the Rindler case. A similar

analysis applies to higher dimensions.

The Rindler wedge R is globally hyperbolic with Cauchy hypersurface ZR (see
fig. (1)). Thus it may be viewed as a spacetime in its own right, and we may
construct a quantum field theory on it. When we do that, we obtain a remarkable

conclusion, namely that the standard Minkowski vacuum S?M corresponds to a

thermal state in the new construction. This means, that an accelerated observer
will feel himself to be immersed in a thermal bath of particles with temperature
proportional to his acceleration a [10],

kT = ha/27rc.

The noise along a hyperbola is greater than that along a geodesic, and this ex-

cess noise excites the Rindler detector: A uniformly accelerated detector in its

ground state may jump spontaneously to an excited state. Note that the temper-
ature tends to zero when h tends to zero. Such a radiation has non-zero entropy.
Since the use of an accelerated frame seems to be unrelated to any statistical

average, the appearance of a non-vanishing entropy is rather puzzling. The Un-
ruh effect shows, that at the quantum level there is a deep relation between
the theory of relativity and the theory of fluctuations associated with states



19. Quantum Fields near Black Holes 395

of thermal equilibrium, two major aspects of Einstein's work: The distinction

between quantum zero-point and thermal fluctuations is not an invariant one,
but depends on the motion of the observer. Note that the temperature is pro-

portional to the acceleration a of the observer. Since a = 11p this means that

Tp = const TV/g--oo = const. This is just the Tolman-Ehrenfest relation [12]
for the temperature in a fluid in hydrostatic equilibrium in a gravitational field.

The factor  goo guarantees that no work can be gained by transferring radiation

between two regions at different gravitational potentials.
Let us calculate the number of 'Rindler-particles' in Minkowski vacuum. To

simplify the analysis, we consider a zero-mass scalar field in two-dimensional
Minkowski space. In the Heisenberg picture, the expansions in terms of annihi-
lation and creation operators are

f dk (akUk + h.c.), where Uk e- iwxo+ikX3
7 w = Ik

irw

and

dp b v + h.c. where v 'P/ 'C"'t, C = 1PI.
476

Pf 4 re

The 3-coefficients are found to be

00

E
,3 (p, k) (Clk ,

V e p'Pdp,P) f( ikp
47r E W KP)

0

where we have evaluated the time-independent 'scalar-product' at t 0 for
which xO = 0. Using the formula

00

f dx x'-le-(+"3)x - F(V)(Ce2 +)32)-v/2 e-iv arctan(8/a)

0

we arrive at

F(ip/r,) ip/K P
e :F 7rp/ 2 r, fork,3 (p, k)

47rr, W VIEW

or at

10(p, k) 12
27rr,w e27rc/K

The Minkowski spacetime vacuum is characterised by akf2M 0 for all k.

Assuming that this is the state of the system, the expectation value of the

occupation number as defined by the Rindler observer, np = bptbp, is found to be

(Qm, npS?m) f dk 10 (p, k) 12 = volume x
1

(12)
e2 7rE / r.
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Thus for an accelerated observer the quantum field seems to be in an equilibrium
state with temperature proportional to T = K/27r = a/27r. An observer with

a = 1021cm/sec' feels a temperature T - 10K. Since T tends to zero as p --+ 00

the Hawking temperature (i.e. temperature as measured at spatial 00) is actually
zero. This is expected, since there is nothing inside which could radiate. But for

a black hole Tjocal -+ TH at infinity and the black hole must radiate at this

temperature.
Let us finally see, how the (massless) Feynman-Green function in Minkowski

spacetime,

1
i,6F (Xi X') =: (OJT (0(x)0(x)) 10) =

i
2 (X - XI)2 - jE I47r

appears to an accelerated observer. Let x = (t, p) and x' = (t', p) be two events

on the world line of an accelerated observer. Since the invariant distance of these

two events is 2p sinh 1i (t - t'), one arrives at the following spectral representation2

of the Feynman-propagator as seen by this observer:

-
-

-1 K)2 4 iE(t-t) 1 J(p2)
,6F (Xi XI) (27r)4-(P f d pe- (P2 + jE

- 27ri
OJEJ - 1 ). (13)

This is the finite temperature propagator. It follows, that atoms dragged along
the world line find their excited levels populated as predicted by a temperature
0' = a/27r.

4 The Stress-Energy Tensor

Semiclassically one would expect that back-reaction is described by the 'semi-

classical Einstein equation'

Gpv = 87rG(T,,),

where the right-hand side contains the expectation value of the energy-momen-
tum tensor of the relevant quantised field in the chosen state. If the charac-

teristic curvature radius L in a region of spacetime is much greater then the

Planck length 1pl, then in the calculation of (T,,,) one can expand in the small

parameterc = (lp,/L)2 and retain only the terms up to first order inE (one-loop
approximation). The term of orderE, containing a factor h, represents the main

quantum correction to the classical result. In the one-loop approximation or free

fields the contributions of all fields to (T,,,) are additive and thus can be studied

independently.
The difficulties with defining (T,,,) = w (T,,,) are present already in Minkowski

spacetime. The divergences are due to the vacuum zero-fluctuations. The meth-

ods of extracting a finite, physically meaningful part, known as renormalisation

procedures, were extensively discussed in the literature [14]. A simple cure for
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this difficulty is (for free fields) the normal ordering prescription. We first con-

sider the ill-defined object 02 (X), which is part of the stress-energy tensor. We

may split the points and consider first the object w(O(x)O(y)) 'which solves the

Klein-Gordon equation. This bi-distribution makes perfectly good sense. For

physically reasonable states w in the Fock space (e.g. states with a finite number
of particles) the singular behaviour of this bi-distribution is the same as that

belonging to the vacuum state, wo (0(x)0(y)). For such states the difference

F(x, y) = Lo (0(x) 0(y)) - Loo (0(x)0(y))

is a smooth function of its arguments. Hence, after performing this 'vacuum
subtraction' the coincidence limit may be taken. We then define

L,, (02 (X)) = lim F(x, y).
X  y

The same prescription can be used for the stress-energy tensor. We define

Lo (T,,, (x)) = lim D,-,,, F (x, x), D,4v, = a4 av, - 1gtiv [,gal9ce' _ M2]. (14)
X-+X1 2

In curved spacetime some restrictions should be expected on the class of states

on which (T,,v) can be defined this way. The Hadamard condition provides a

restriction of exactly this sort of states.

Although (14) is not a physical definition of expectation values of the stress-

energy tensor itself (no preferred vacuum state, vacuum polarisation), it sensibly
defines the differences of the expected stress energy between two states. In the
absence of an obvious prescription it is useful to take an axiomatic approach.
Wald showed that a renormalised stress tensor satisfying certain reasonable phys-
ical requirements is essentially unique [13]. Its ambiguity can be absorbed into
redefinitions of the coupling constants in the (generalised) gravitational field

equation. Wald's requirements are:

Consistency: Whenever w1(O(x)O(y)) - W2(O(X)O(Y)) is a smooth function,
then w, (Tmv) - W2 (T,,,) is well-defined and should be given by the above 'point-
splitting' prescription.
Conservation: There is a regularisation which respects the diffeomorphism, in-

variance, so that V,T/11 = 0 holds. This property is needed for consistency of
Einstein's gravitational field equation.
Normalisation: In Minkowski spacetime, we have (flm, T,,, f2m) = 0.

Causality: For a fixed in-state in an asymptotically static spacetime win (T. W)
is independent of variations of gliv outside the past light cone of x. For a fixed

out-state, w,,t (T,,,) is independent of metric variations outside the future light
cone of x -

The Causality axiom can be replaced by a locality property, which does not

assume an asymptotically static spacetime. The first and last properties are the

key ones, since they uniquely determine the expected stress-energy tensor up to

the addition of local curvature terms:
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Uniqueness theorem: Let T,,,, and t,,, be operators on a globally hyperbolic
spacetime satisfying the axioms of Wald. Then the difference U., = Tjv - t4v
is a multiple of the identity operator, is conserved, VvU4v = 0 and is a local

tensor of the metric. That is, it depends only on the metric and its derivatives,
via the curvature tensor, at the same point x. As a consequence W (T4v) - W(tmv)
is independent of the state w and depends only locally on curvature invariants.

The proofs of these properties are rather simple and can be found in the standard

textbooks.

Calculating the stress-energy tensor. A 'point-splitting' prescription where

one subtracts from w(O(x) 0(y)) the expectation value wo (O(x) 0(y)) in some fixed

state wo fulfils the consistency requirement, but cannot fulfil the first and third

axiom at the same time. However, if one subtracts a locally constructed bi-

distribution H(x, y) which satisfies the wave equation, has a suitable singularity
structure and is equal to (f2m, O(x) 0(y) f2m) in Minkowski spacetime, then all

four properties will be satisfied.
To find a suitable bi-distribution one recalls the singularity structure (6) of

W2 (X i Y) -
In Minkowski spacetime and for massless fields w = 0 and this suggests

that we take the bi-distribution

H(x, y) -
" (X1 Y)

+ V (X, Y) log 0,
0,

For massless fields the resulting stress-energy obeys all properties listed above

(for massive fields a slight modification is needed).
Effective action. The classical metric energy momentum tensor

C1 TA,W =

2 is

V_jgj Jgtlv (X)

is symmetric and conserved (for solutions of the field equation) for a diffeo-

morphism-invariant classical action S. If we could construct a diffeomorphism-
invariant effective action r, whose variation with respect to the metric yields
an expectation value of the energy momentum tensor,

(TI,V W) =

2 6F

V1_9_1 6g11V(X)'

then (Tiv) would be conserved by construction. There exists a number of pro-
cedures for regularising (T ,v), i.e. dimensional, point-splitting or zeta-function

regularisation, to mention the most popular ones. Unfortunately the 'divergent'
part' of T

,,v cannot be completely absorbed into the parameters already present
in the theory, i.e. gravitational and cosmological constant and parameters of
the field theory under investigation. One finds that one must introduce new,
dimensionless parameters.
The regularisation and renormalisation of the effective action is more transpar-
ent. The divergent geometric parts of the effective action, F f 77^tdiv + Ffinite
have in the one-loop approximation the form

C(W yl)2 [(RiCCi)2 2] V2 2
'Ydiv = A + BR + e + D -R +E R+FR
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Only the part containing A and B can be absorbed into the classical action of

gravity. The remaining terms with dimensionless parameters C - F lead, upon
variation with respect to the metric, to a 2-parameter ambiguity in the expression
for T,,.
Effective actions and (TA,) in two dimensions. In two dimensions there are

less divergent terms in the effective action. They have the form -Ydiv :-,::: A + BR.

The last topological term does not contribute to TA, and the first one leads to

an ambiguous term - AgAv in the energy momentum tensor.

The symmetric stress-energy tensor has 3 components, two of which are (al-
most) determined by T v = 0. As independent component we choose the trace

,V

T = Tm which is a scalar of dimension L-2
.
The ambiguities in the reconstruc-

tion of Tt" from its trace is most transparent if we choose isothermal coordinates

for which

ds2
= e2o, ((dxo )2 - (dxl )2)

This is possible in two dimensions. Introducing null-coordinates

U =
1
(xo - x1) and v = I(xo + x1) =: d82 = 4e2dudv,

2 2

the non-vanishing Christoffel symbols are Fuu = 2,9uu, F ,' , = 2(9,o, and the Ricci
scalar reads R = -2e-2,7 au 19V o-. Rewriting the conservation in null-coordinates

we obtain

au(Tvv) + e
2o, (9V  T) = 0

, i9v (Tuu) + e2o-au (T) = 0, (15)

where T = TA = e-2'Tuv. The trace  T) determines (Tv,) up to a function
A

tv (v) and (Tuu) up to a function tu (u). These free functions contain information
about the state of the quantum system.
In the case of a classical conformally invariant field, 'IT" = 0. An important

A
feature of (TA,) is that its trace does not vanish any more. This trace-anomaly is a

state-independent local scalar of dimension L-2 and hence must be proportional
to the Ricci scalar,

(T) -
c
R

C
e-2o-,9U,9V 0,,

247r 121r

where c: is the central charge. Inserting this trace anomaly into (15) yields

C
92 C

quu,.) _e' u,ve-' + tu,, and (Tu,) - - DOC. (16)
127r 127r

Formally, the expectation value of the stress-energy tensor is given by the path
integral

1 2 6
e

2 6
(TA, W) Do -P101

AVz[g] f g g gg
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where the effective action is given by

rig] = -Iogzlgl = -log Do e-s '01
- Ilog det (- A,)f 2

and we made the transition to Euclidean spacetime (which is allowed for the

2d models under investigation). For arbitrary spacetimes the spectrum of A, is

not known. However, the variation of 1' with respect to o, in g., = e2o- ,v is

proportional to the expectation value of the trace of the stress-energy tensor,

6F
- -2g"v(x)

W
= -  ,Fg(T" (x)

JO-(X) Jg4v (X) 4

and can be calculated for conformally coupled particles in conformally flat space-
times. From the conformal anomaly one can (almost) reconstruct the effective
action. In particular, in two dimensions the result is the Polyakov effective action

vlg--R
1
R,rig] - riji =

, f967r A

where the central charge c is I for uncharged scalars and Dirac fermions2. The
(T,,) is found by differentiation with respect to the metric. The covariant ex-

pression is

c (2,,,R - 2VmV,S + VmS - V,S - 19U'VOS - VIS), (17)
487r 2

with S and in isothermal coordinates this simplifies to (16), as it must be.
This energy-momentum tensor is consistent, conserved, and causality restricts
the choice of the Green function 1/A. The ambiguities in inverting the wave

operator in (17) shows up in the free functions t,,,,v. A choice of these functions
is equivalent to the choice of a state.

Let us now apply these results to the (t, r) part of the Schwarzschild black hole

ds2
=a(r) dt2 _

1
dr2, a(r) = 1 -

2M
(G = 1)

a (r) r
,

which we treat as two-dimensional black hole'. We use the 'Regge-Wheeler tor-

toise coordinate' r. r + 2M log (r1M - 2), such that the metric becomes

conformally flat, ds2
a (dt2 - dr2) and introduce null-coordinates 2u = t -

r.* and 2v = t + r*. Using o9, = aY, we obtain for the light-cone components
(16) of the energy momentum tensor

-

c (2Ma M2 ) + tu' , (T
c 2Ma

(TUU,VV) - UV
-

127r r3
+ 74 127r r3

see [15] for modifications of this result, for a spacetime with nontrivial topology.
3The resulting energy-momentum tensor is not identical to the tensor that one gets
when one quantises only the s-modes in the four-dimensional Schwarzschild metric

[16].
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or for (T,,,) in the x" = (t, r.) coordinate system

CM 4r + 0 1 t" + t' t" - t'
(Til V) 247rr4 0 M +

4a 4 - t. -t. - t,
(18)

a

The Boulware state is the state appropriate to a vacuum around a static star and

contains no radiation at spatial infinity J: . Hence tu and t, must vanish. This

state is singular at the horizon. To see that, we use regular Kruskal coordinates:

U = -e-u/2M and V = e'/2M so that dS2 =
16M3

e-r/2mdUdV. (19)
r

With respect to these coordinates the energy-momentum tensor takes the form

(Tuu) = 4 ( M) 2
(Tuu), (Tvv) 4( M)2 (T,,) and (TUV) = -4

M2(TU
1U V UV

For the Boulware vacuum tu - tv 0 and is singular at the past horizon

at V = 0 and future horizon at U 0. The component (Tuu) is regular at the
future horizon if M2tu == c/1927r and (Tvv) is regular at the past horizon if

M2tv ::= c/1927r. The state regular at both horizons is the Israel-Hartle-Hawking
state. In this state the asymptotic form of the energy-momentum tensor is

(OHHITAIOHH) -
-C 1 0 c7r

(kT)2
1 0

(20)V 3847rM2 0-1 6 0-1

with T - 1/87rkM = r,/27rk. This is the stress-tensor of a bath of thermal radia-
tion at temperature T. Finally, demanding that energy-momentum is regular at

the future horizon and that there is no incoming radiation, Le. M2tu = c/1927r
and tv = 0, results in

C c7r
(OujTAvjOu) -

7687rM2 12
(kT)2

-1 -1 (21)

The Unruh state is regular on the future horizon and singular at the past horizon.
It describes the Hawking evaporation process with only outward flux of thermal
radiation.

Euclidean Black Holes. The most elegant and powerful derivation of the

Hawking radiation involves an adaption of the techniques due to Kubo to show
that the Feynman propagator for a spacetime with stationary black hole sat-

isfies the KMS condition. Consider a system with time-independent Hamilto-
nian H. The time evolution of an observable A in the Heisenberg picture is
A(z) = e

izHAe-izH, where z = t + i-r is complex time. For -r = 0 (t = 0) it

is the time-evolution in a static spacetime with Lorentzian (Euclidean) signa-
ture. If exp(-OH),,3 > 0 is trace class, one can define the equilibrium state of

temperature T = 1/0:

(A),3 =
1
tr e-OHA, Z = tre-OH

. (22)
Z
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Let us introduce the finite temperature correlation functions

G'3 (z, i, Y) = (O(z, i)0(0, 9)),8 =
1
tr e'(z+'O)HO(O, i)e-izHO(O' W)+ Z (

G'3 (z, i,:V) = (0(0, W)O(z, i)),8 =
1
tr (0(0,:V)eizHO(O' i)e -i(z-i,3)H

Z

We have used the cyclicity under the trace. Both exponents in G+ have negative
real parts if -o < -r < 0; for G_ the condition reads 0 < r < 0. Therefore, these
formulae define holomorphic functions in those respective strips with boundary
values G3 (t, Y, W). It follows immediately, that

G'3 (z, i,:V) = G3 (z - iO, i, yv-) (23)

which is the KMS condition. This condition is now accepted as a definition of
'thermal equilibrium at temperature 1/07.
So far the analytic functions G have been defined in disjoint, adjacent strips
in the complex time plane. The KMS-condition states that one of these is the
translate of the other and this allows us to define a periodic function throughout
the complex plane, with the possible exception of the lines -r = !  (z) = no.
Because of locality O(x) and 0(y) commute for space-like separated events and

[O(t, i), 0(0,:V)] = 0 for t G I C R.

Then the boundary values of G13 coincide on I and we conclude (by the edge-of-
the-wedge theorem) that they are restrictions of a single holomorphic, periodic
function, 90 (z,:F, Y), defined in a connected region in the complex time plane
except parts of the lines -r = no.
With these preparations we are now ready to show that the Green function in
Schwarzschild spacetime satisfies the KMS-condition. Starting with the analyt-
ically continued Schwarzschild metric

ds2
= adz2 dr2

_ r2dfl2, a=1-2M/r, z=t+i-r,

we perform the same coordinate transformation to (complex) Kruskal coordi-
nates as we did for the Lorentzian solution:

Z = V + U = 2e'* 14M sinh
z

and X =V-U= 2e'-- 14M cosh
z

4M 4M*

The line element reads

ds2
=

16M3
e-r/2M dZ2 - dX2 r2dQ2

r

and the Killing field takes the form

K = o9z =
1
nX + X(9Z) -

1 (VaV - Uau).4M ( 4M
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Setting Z = T + iT the orbits of K are

T
= 2e"-- 14M(sinh tI4M) and

7'
= 2e'* /4M

sin -r14M
X  cosh t14M) X cos -r14M

in the Lorentzian and Euclidean slices, respectively. As expected from the gen-
eral properties of bifurcation spheres, these are Lorentz-boosts and rotations,
respectively. Since the Euclidean slice is periodic in -r, the analytic Green func-
tion 9 (z - t + ur, i, W) is periodic in imaginary time r with period 87rM. This

corresponds to a temperature T = 1/87rM, the Hawking temperature.
The vector field (with affine parametrisation) normal to the Killing horizon JV
(the past and future horizons) is I - Ov on the future horizon and 1 = 9u on

the past horizon. It follows that the surface gravity r. (see (9)) is 1/4M on the
future horizon and -112M on the past horizon.

Energy-momentum tensor near a black hole. In any vacuum spacetime
R,,,, vanishes and so do the two local curvature terms which enter the for-
mula for T., with undetermined coefficients. Hence T

,,,
is well-defined in the

Schwarzschild spacetime. The symmetry of (TA) due to the SO(3) symmetryV

of the spacetime of a non-rotating black hole and the conservation V,(T"') re-

duce the number of independent components of (T"). Christensen and FullingV

[18] showed that in the coordinates (t, r., 0, 0) the tensor is block diagonal. The

(t, r,,) part admits the representation

1:
_

H+G 20 0 W 1 -1 N -10
(TA) = 2 ar _ + + (24)V 0 H+G 47rar2 1 -1 2

ar:2 ar 0 1

and the (0, 0)-part has the form

T 10
(T4) = ( + 0) 0 1

. (25)V 4

Here N and W are two constants and

a(r) 1 - 2M) T(r) = (T"), 0 (r) = (T9 T(r)
r

0 4
r

H (r)
2 f (r' - M)T(r) dr', G (r) 2 f (r' - 3M)0(r') dr'.
2M M2

The energy-momentum tensor is characterised unambiguously by fixing two func-
tions T(r), e(r) and two constants N, W. The constant W gives the intensity of
radiation of the black hole at infinity and N vanishes if the state is regular on

the future horizon.
The radiation intensity W is non-vanishing only in the Unruh vacuum. It has
been calculated for the massless scalar field (s = 0), two-components neutrino
field (s = 1/2), electromagnetic field (s = 1) and gravitational field (s = 2) by
Page and Elster [19]:
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m2W M2 2W0 W1Z2 M2W, M 2

7.4- 10-5 8.2- 10-5 3.3- 10-5 0.4- 10-5

The coefficient N vanishes for the Unruh and Israel-Hartle-Hawking states.

The calculation of the functions in (24,25) meets technical difficulties connected

with the fact that solutions of the radial mode equation (see below) are not

expressed through known transcendental functions and, consequently, one needs

to carry out renormalisation in divergent integrals within the framework of nu-

merical methods. The results for (Vt) and (T' ) for the Israel-Hartle-Hawking
and the Unruh states have been calculated by Howard/Candelas and Elster [20].
In the Hartle-Hawking state the Kruskal coordinate components of (T,,,) near

the horizon are found to be of order 11MI. The energy flux into the black hole is

negative, as it must be since the 'Hartle-Hawking vacuum' is time independent
and the energy flux at future infinity is positive. This is possible since (T,,,) need

not satisfy the energy conditions.

s-wave contribution to (T,,,). The covariant perturbation theory for the 4d

effective action F as developed in [23] is very involved for concrete calculations.
Here we shall simplify the problem by considering s-modes of a minimally cou-

pled massless scalar field propagating in an arbitrary (possibly time-dependent)
spherically symmetric four-dimensional spacetime. The easiest way to perform
this task is to compute the contribution of these modes to the effective action.

We choose adapted coordinates for which the Euclidean metric takes the form

ds2
= ^fab(x') dx'dxb

+ f22(Xa )wij dx'dxj,

where the last term is the metric on S2
.
Now one can expand the (scalar) matter

field into spherical harmonics. For s-waves, 0 = O(xa), the action for the coupled
gravitational and scalar field is

S = _

1 f [f22 -yk + 'R+2(Vf2)2] V -__yd2X + 27r fS?2 (VO) 2,/---yd2 X,
4

where ^YR is the scalar curvature of the 2d space metric 'Yabi w1Z = 2 is the scalar

of S2 (VQ)2 = abq,curvature and 20(90?. The purely gravitational part of the

action is almost the action belonging to 2d dilatonic gravity with two exceptions:
first, the numerical coefficient in front of (Vf?)2 is different and second, the action

is not invariant under Weyl transformation due to the '1Z term. The action is

quite different from the actions usually considered in 2d (string-inspired) field

theories, because of the unusual coupling of 0 to the dilaton field ST Choosing
isothermal coordinates, 7ab = e2o- f

,
where -yf is the metric of the flat 2d space,_ a b ab

one arrives with (-function methods at the following exact result for the effective
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action for the s-modes [16]

S +

j?]
1

-Y -R
1

'YR -

Z ^(f2 1
-Y R) \,F-yd2X

87r f (12 L S? A

(O.rg FS[Or = 0, 0] =
2
log det 'n' f +

The second contribution (') F is invariant under 2d Weyl transformation, whereas
the first one is not. Unfortunately, the determinant cannot be calculated exactly
and one must resort to some perturbation expansion. For details I refer to [16].
Ignoring backscattering one finds

Mr -

1 ( 1
1 1z

1
'YR X [1 + log 2 ),\F-yd2 X.87r 12 A

^t
S? P

f
Due to backscattering one needs to add the following term:

(2) _p = - f R
I
"R + local terms) vl d2

X,
12 .87r A-Y

where 0.9. From the action F2 =(1) r +(2) r one obtains (T,,) by variation
with respect to the metric. To get the flux of the Hawking radiation we need to

continue back to Lorentzian spacetime by changing the signs in the appropriate
places. According to [23] we arrive at the in-vacuum energy-momentum tensor

by replacing -11Z by the retarded Green function. Neglecting backscattering,
the luminosity of the black hole is found to be

7r 1
L -- --

)2'12 (87rM

This coincides with the total s-wave flux of the Hawking radiation obtained
with other methods [5] without taking backscattering effects into account. With

backscattering, the Hawking radiation is modified and compares well with that
obtained by other means [24].

5 Wave equation in Schwarzschild spacetime

We study the classical wave propagation of a Klein-Gordon scalar field in fig.2.
At late times, one expects that every solution will propagate into the black hole

region II and/or propagate to J+.
In the spherically symmetric spacetime we may set

f (t, r) .

t

r
Yie-"
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singularity ,, -
H+

U=- C U=- -10gE
ic

io

V, V

v=- E

Fig. 2 The propagation of particles in the geometric optics approximation.

and the wave equation (E] + M2)0 = 0 reduces to the radial equation

a2f 92 f 2M) (2M 41 + 1). + M2
&2 9,r2

V(r.)f = 0, V(r.) = (1 -
r -r3 +

r2 ),(26)
where M is the mass of the black hole and m that of the Klein-Gordon field. As

r* -+ -oo (i.e. r -+ 2M) the potential falls off exponentially, V - exp(r*/2M),
and as r* -4 oo the potential behaves as - m

2
- 2MM2/r* in the massive case

and - 1(1 + 1)/r2 in the massless case. In the asymptotic region r -+ oo this

equation possesses outgoing solution - eiwr- and ingoing solutions - e-i,r... In

terms of the null-coordinates the asymptotic solutions look like

fuOut - -2iwu i't
- e-2iwv.e and f,,' (27)

Consider a geometric optics approximation in which a particle's world line is

a null ray, -y, of constant phase u and trace this ray backwards in time from

J+ .
The later it reaches J+ the closer it must approach H+. As t -+ oo the

ray -y becomes a null geodesic generator 'YH of H+. We specify -Y by its affine

distance from 7H along an ingoing null geodesic through H+ (see fig.3a). The

affine parameter on the ingoing null geodesic is U, so that according to (19)

1
fout -

1W
U = -E =: U

2 r,
log E, 0 exp (

r,
logE)
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VFIF

,oing
[ geodesic

Fig. 3 The particle's world line -y in relation to 'YH and the parallel-transport of n and

I along the continuation Of -fH back to J-.

This oscillates rapidly at later times t and this justifies the geometric optics
approximation. Now we must match ff" onto a solution near J-. In our ap-

proximation we just need to parallel-transport n and 1 along the continuation of

-yH back to J- -
We choose v such that this continuation meets J- at v = 0.

The continuation of - will meet J- at an affine distance E along an outgoing
null geodesic on J-. Since ds' = 4dudv + .. . on J- the coordinate 2v is the

affine parameter measuring this distance, so 2v = -,E on 7 and

exp log(-2v))O(-v),
where we took into account, that null rays with v > 0 do not reach J+. Now we

take the Fourier transform

0 00

-

I e2iw'v f. (v) dv =1 f)'w /K e-"" 46, w' > 0
-f 2 f

00 0

Using (11) one sees, that

for w' > 0.

It follows, that a mode of positive frequency w on J+ matches onto mixed

positive and negative frequency modes on J- -
We see, that the Bogolubov co-

efficients are related by Oij exp(-7rwi/r,)aij. Rom the Bogolubov relations

(4) one then gets

(0,3t (28)2-7rwilr.ii e 7

For calculating the late time particle flux through J+ we need the inverse 3-

coefficients,  ' = -01. One easily finds, that (Ni)j+ = (04 %i = (00t)ii- This

is the Planck-distribution at the Hawking temperature TH = hr,/27r.
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The detailed form of the potential in (26) is irrelevant in the geometric optics
approximation. But the incoming waves will partially scatter off the gravitational
field (on the 1-dependent potential V in (26)) to become a superposition of

incoming and outgoing waves. The backscattering is a function of W and the

spectrum is not precisely Planckian. The total luminosity of the hole is given by

1
00

00

L =

21r 1: (21 + 1) f &) u)
e"Mw (29)

1=0 0

A black hole is actually grey, not black. The dependency on the angular momen-
tum (and spin) of the particles resides in the grey-body factor FLj.

6 Back-reaction

The main effect of the quantum field will be a decrease of M at the rate at

which energy is radiated to infinity by particle creation. Since the spacetime is

static outside the collapsing matter, the expected energy current J. ::= (T4,)K'
is conserved in that region. The calculation showed, that there will be a steady
nonzero flux F. In [21] the contribution of the different particle species to this
flux has been determined. The contribution of massive particles of rest mass m

is exponentially small if m > K. Black holes of mass M > 10"g can only emit

neutrinos, photons and gravitons. Black holes of mass 5. 1014g< M < 1017g
can also emit electrons and positrons. Black holes of smaller mass can emit

heavier particles. A non-rotating black hole emits almost as a body heated to

the temperature

T[OK] =
hK hC3

-1026
1

27rc 87rGkM M[g]

The deviation from thermal radiation is due to the frequency dependence of
the penetration coefficient This coefficient is also strongly spin-dependent,
rS'j1 _ W2s+l

.
As spin increases, the contribution of particles to the radiation of

a non-rotating black hole diminishes. The distribution of the radiated particles
in different mass-intervals is shown in the following table:
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IL [  ] 1particles radiatedM [91 see

2

M > 1017 3.5 x 1012
M

81.4% v, P, v,,, Pp
16.7% 7 1.9% g

1017 > M > 5 x 1014 6.3 X 1016
M

45% Ve, iPe, Vtz, iPA
9% 7 1% g
45% e-, e+

:2

1014 > M > 1013.5 1019 ( M
48% Ve, Pe, Vp, Clp
28% e-, e+ 11% -y
1% g 12% N,

The following formula describes the rate of mass loss

-

dM
_ 4. 10-5f.

2 MP1
= 7-7. 1024f . ( 1 )2 g a

(30)
dt ( M ) tP1 M[g] sec M2

*

The contributions of the (massless) particle species are encoded in f (M). From

Page we take

f = 1.02h(
1

) + 0.42h(l) + 0.05h(2),
2

where h(s) is the number or distinct polarisations of spin-s particles. The rate

equation (30) is easily integrated to yield

M (t) = (M3
- 3at) 1/3

We see that a black hole radiates all of its mass in a finite time r - M03/3a.
Inserting for a yields

M 3
,r _ 1071(MG) ) sec.

If primordial black holes of mass - 5. 1014g were produced in the early universe,

they would be in the final stages of evaporation now. Primordial black hole

of smaller mass would have already evaporated and contributed to the -y-ray

background. See the review of Carr [22] for the possibility of observing quantum
explosions of small black holes.

The magnitude of the Kruskal coordinate components of (T,,,)H near the black

hole are found to be of order 11M' in Planck units, as expected on dimensional

grounds. Since the background curvature is of order 1 /M2 the quantum field

should only make a small correction to the structure of the black hole for M > 1,
or M > 10-59.
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7 Generalisations and Discussion

In the previous section we have studied the Hawking effect in the case of the

Schwarzschild black hole. Lets us consider now different generalisations of this

effect and its possible consequences.

Hawking radiation of rotating and charged holes. The Kerr solution has

null-hypersurfaces at

r = r = M N/M2 - a2,

where a = JIM, which are Killing horizons of the Killing fields

K = k + Qm = k + ( 2

a 2) M k = i9t, m = 9,6,
r + a

with surface gravities

r - r:F
2 (r2 + a2

For the extreme Kerr solution with a
2 M2 the surface gravity vanishes.

For a Schwarzschild hole the number of particles per unit time in the fre-

quency range w to w + dw passing out through a surface of the sphere is

I dw

e87rMw - I 27r

For a Kerr Black hole w is replaced by w - mS? in this formula, where M is the

azimuthal quantum number of the spheroidal harmonics, and Q is the angular
speed of the event horizon. Hence, the Planck factor at J+ becomes

+ fermions, -bosons.
e27r(w-mS2)/K 1 1

The emission is stronger for positive m than for negative m. In the boson case

the Planck factor becomes negative when w < mS? and super-radiance occurs:

the effect of radiation amplifies the incoming classical wave with positive m.

The result admits the following interpretation: Consider a rotating black hole

enclosed in a mir.ror-walled cavity. A scattering of a 'particle' in a super-radiant
mode by the black hole increases the number of quanta. After reflection by the

mirror, these quanta are again scattered on the black hole and their number

increases again, and so on. No stationary equilibrium distribution is possible for

such modes. However, if the size of the cavity is not too large, r < 1/0, then the

super-radiative modes are absent and equilibrium is possible. A related effect

is that the rotation of the hole enhances the emission of particles with higher
spins.

For a charged hole with Reissner-Nordstr5m metric

82 2
_

1
2 2 02,

2M q2
d = a(r)dt dr + r d a(r) = 1 - - +

2a(r) r r
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the event horizon is at r = r+ M + (M2 - q2) 1/2 and the surface gravity is

found to be

I - 167r2q4/A2

4M

where A = 47rr2 is the area of the horizon. If follows that the presence of the

charge depresses the temperature kTH = r./27r of the hole. For an extremal hole

with charge q = M or with a
2
= M2 the Hawking temperature is zero, whereas

the area is not (A = 47rM2 for the extreme Reissner-Nordstr6m hole). In the
laws of black hole thermodynamics the entropy of a black hole is S = A/4 and
hence non-vanishing for extreme black holes. The formulation of the third law,
namely that S --+ 0 as T --- 0, is not true for extremal holes4. The failure of the
formulation of the third law may not be too disturbing. There other quantum
systems with a degenerate ground state for which it fails as well.
Loss of Quantum Coherence. Consider the behaviour of the quantum field
in the spacetime of a collapse, fig.4 in which back-reaction effects are not taken
into account. The state of the field at late times in region I, and in particular
the flux of thermal particles reaching infinity, must be described by a density
matrix. The particles which entered the black hole at early times are correlated
with the particles in region I. There is always a loss of information whenever one

performs an inclusive5 measurement outside the horizon. Such entropy increase
is common to all inclusive measurements in physics. Perhaps we can understand
this situation better if we recall the resolution of the well-known question raised

by Einstein, Podolsky and Rosen. A pure quantum state is defined globally; its
coherence may extend over field variables located at well-separated points on a

space-like surface.
Let us distinguish between the set of out-states corresponding to particles mov-
ing away from the black hole (the visible ones) and those falling into the hole

(the invisible ones). When one calculates expectation values (A) = (0, AO) of

operators A depending only on the creation and annihilation operators belong-
ing to the visible modes, this expectation value can be written as (A) = trpA.
In a Fock space construction one can derive an explicit formula for the density
matrix p in terms of the pure state 0. Here it suffices to sketch the emergence of
a mixed state from a pure one. Let 0 = 0j, 0 OjII be orthonormal pure states in

the big Hilbert space ?i - W, O'Hrj. Let us further assume that the observable
A is the identity in 'HII. Then the expectation value

(0, AO) in the pure state 0 ai7pI & 0II, E jail 2
i i

becomes

(0, AO) = 1: diaj (0j, 0 OjII, AOjI 0 OjII) = E pi (OjI, AOjI) = tr (pA),
ij

4
see the contribution of Claus Kiefer: the canonical theory of gravity predicts S(T
0) = 0, whereas superstring-theory predicts S(T -+ 0) = A/4.
not all commuting observables are measured
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r = 0 (singularity) event horizons

Cauchy surface

I

r 0

Fig. 4 A conformal diagram of the spacetime resulting from a complete collapse of a

spherical body. The region II lies outside of the chronological past of J+.

where pi = la,12 and p = EpiPi. The Pi are the projectors on the states Of.
We have used, that the 0 1 are orthonormal. Thus, if we are only measuring
observables in the region I outside of the black hole and ignore the information

about the inside, then pure states become indeed mixed states. For a black hole

ai - exp(-7rwi/r,) (see (28)) and p is the thermal state. As is also clear, for

operators A which are not the identity in 7111 the expectation values (0,AO)
cannot be written as trpA.
Consider now the spacetime fig.5 in which back-reaction causes the black hole to

'evaporate'. The visible particles propagating to infinity can be described by a

(thermal) density matrix. The particle creation and scattering will be described

by a unitary S-matrix, provided that the invisible particles are represented in

the 'out'-Hilbert space. What happens now when the black hole disappears from

the spacetime? Apparently at late times, if one takes the 'out'-Hilbert space

to be the Fock space associated with visible particles, the entire state of the

field is mixed. Then one cannot describe particle creation and scattering by a

unitary S-matrix, since an initial pure state evolved into a density matrix. This

is the phenomenom of loss of quantum coherence. What are the possible ways

out of this problem? A complete calculation including all back-reaction effects

might resolve the issue, but even this is controversial, since the resolution very

probably requires an understanding of the Planck scale physics. For example,
QFT predicts that Ti, -+ oo on the horizon of a black hole. This should not

be believed when T reaches the Planck energy. The quantum aspects of gravity
cannot be any longer ignored and this temperature is then of the order of the
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event of coi

r 0 (singularity) M = M 0

r 0

Fig. 5 A conformal diagram of a spacetime in which black hole formation and evapo-
ration occurs. The contour labelled M = 0 lies at the (retarded) time corresponding
to the final instant of evaporation.

maximum (Hagedorn) temperature of string theory6.
A natural approach to dealing with this situation is to consider 'toy models',
for example in two spacetime dimensions, in which the semiclassical analysis
could be done. In lower dimensions one adds a 'dilaton' field to render gravity
non-trivial (this field naturally arises in low energy string theory) -

The resulting
two-dimensional theories are dynamically nontrivial and mimic many features of
four-dimensional general relativity: they possess black-hole solutions, Hawking
radiation and there exist laws of black hole thermodynamics which are com-

pletely analogous to the laws in four dimensions. Callen et.al [25] studied the
model

2X, 2o- (N70,)2 A2] + 2),S d V/_g(e- [R + 4 +4
27r f g

2
(Vf) (31)

containing a metric field g,,, a dilaton field o, and a matter field f -
The Hawking

radiation of the f-'particles' can be calculated the way we explained in our two-

dimensional model calculations above. So far these model calculations have not

resolved the problems with the final stage of the black hole evaporations (the
problems are the same as those with the Liouville theory at strong-coupling).
A further simplification of (31) has been discovered by Russo, Susskind and

Thorlacius [26]. Rather recent calculations seem to indicate7 that information is

not destroyed, but slowly released as the black hole decays back to vacuum [27].
" See the contribution of G. 't Hooft.
7 See the contribution of C. Kiefer.
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Towards a Full Quantum Theory of Black Holes

Claus Kiefer

FakulUit ftir Physik, Universitiit Freiburg, Hermann-Herder-StraBe 3, D-79104

Freiburg, Germany

Abstract. This review gives an introduction to various attempts to understand the

quantum nature of black holes. The first part focuses on thermodynamics of black holes,
Hawking radiation, and the interpretation of entropy. The second part is devoted to

the detailed treatment of black holes within canonical quantum gravity. The last part
adds a brief discussion of black holes in string theory and quantum cosmology.

I Introduction and Summary

It is of fundamental importance to obtain a full quantum description of black
holes. The reasons are of a technical, conceptual, and observational nature. Tech-

nical, because it provides a highly nontrivial application of quantum gravita-
tional equations in the full, non-perturbative, regime. One of the main open
issues thereby is what substitutes the classical singularities in quantum theory.
Conceptual, because the present status of semiclassical approaches leads to prob-
lems such as the information loss problem, which can be satisfactorily dealt with

only in the full theory. Observational, because apart from potential cosmologi-
cal data this is probably the only window to directly test a quantum theory of

gravity.
This goal has not yet been reached, since a consistent theory of quantum

gravity has not yet been constructed. Many quantum aspects of black holes,
however, have been understood in the last 25 years, which could lead the way
to a full understanding. This review article is intended to give a pedagogical
introduction to results which have been obtained in the framework of present
approaches towards quantum gravity.

In Sect. 2, 1 shall review the key issues which lead to the conclusion that
black holes are quantum objects. The issues are thermodynamics of black holes,
Hawking radiation, and the interpretation of black hole entropy. Since many of
these topics are discussed at great length by other lecturers, in particular by
't Hooft, Israel, Neugebauer, and Wipf, I shall present only those issues which I
consider to be of particular relevance.

Sect. 3 presents one approach towards a theory of quantum gravity in some

detail - the canonical quantisation of general relativity. This approach by itself
most likely leads to an effective theory only, but it is the most straightforward
approach available and offers by itself interesting insights into possible quantum
aspects of black holes. The issues addressed cover both applications of the "full"

theory (such as a wave function for the eternal Reissner-Nordstr6m hole) and

F.W. Hehl, C. Kiefer, R.J.K. Metzler (Eds.): LNP 514, pp. 416 - 450, 1998
© Springer-Verlag Berlin Heidelberg 1998
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the semiclassical expansion (such as the description of Hawking radiation and
black hole entropy in the context of the Wheeler-DeWitt equation).

Sect. 4, finally, gives a brief introduction to superstrings and the issue of black
hole entropy as being obtained from counting the states of D-branes. I shall also
offer some speculations about the role of black holes in quantum cosmology.

2 Why Black Holes Are Quantum Objects

2.1 Thermodynamics of Black Holes

In the beginning of the seventies, a surprising analogy was discovered between
black holes and thermodynamical systems in the framework of general relativity,
see the lectures by Israel and Neugebauer in this volume. (Other reviews are,

e.g., Bekenstein (1980), Wald (1994, 1998), and Kiefer (1997a)). This analogy is

summarised in Table 1 (with an obvious notation):

Table 1 The laws of black hole mechanics

Law IThermodynamics IStationary Black Hole

Zeroth T constant on a body surface gravity r. constant on theI in thermal equilibrium horizon of a black hole

First dE = TdS - pdV + ydN d(MC2) = 'c2 dA + f2dJ - Odq87rG

Second dS > 0 dA > 0

Third I T = 0 cannot be reached I r, = 0 cannot be reached

In the following I shall mostly deal with nonrotating holes (J = 0), but often

keep a nonvanishing charge q. This is not realistic from an astrophysical point
of view, but provides an interesting nontrivial example which mimics in many

examples the relevant case of rotating holes.

Some comments are appropriate for the Third Law, because this will also be

relevant for Sect. 3. In ordinary thermodynamics, there exist various inequivalent
formulations of this law. One version frequently used was introduced by Planck
in 1911: The entropy S goes to zero (or a material-dependent constant) as the

temperature T goes to zero. From this (and some mild assumptions) follows a

weaker version: T = 0 cannot be reached in a finite number of steps, see e.g.
Wilks (1961) for details. It is this version of the Third Law that was proven

by Israel (1986) for black holes and that is stated in Table 1. (In the proof
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the validity of the weak energy condition for matter in a neighbourhood of the

apparent horizon was used.)
S -* 0 as T -4 0 is very helpful in thermodynamics, since it allows one to determine

the entropy from measurements of specific heats, C. It follows from Planck's version of

the Third Law that C -* 0 as T -+ 0, but not vice versa (as is sometimes erroneously
stated). Planck's version is not always fulfilled; it is violated, for example, for glasses
(which have a higher disorder than the corresponding cristalline state). Other examples
include the molecule CH3D (Straumann 1986) or a gas confined to a circular string at

zero temperature (Wald 1997). From the point of view of quantum statistics it is clear

that Planck's version holds if there is a unique non-degenerate ground state at T = 0.

This is violated in these examples.

The above analogy between black hole mechanics and ordinary thermody-
namics holds in a much more general framework than general relativity, see Iyer
and Wald (1994, 1995), and Wald (1998). If one only assumes that the field

equations follow from a diffeomorphism covariant Lagrangian, L, the First Law

holds (whether a generalisation of the area theorem holds is not clear).
The term' rdA/87rG occurring in the First Law is replaced by

K JL
d Q = -dS, with S -= -21r nabncdf, 2 7r f, Mabcd

where Q is the 2-form associated with the Killing field  normal to the horizon, where

the presence of a bifurcate Killing horizon is assumed (C is the bifurcation surface);
n b denotes the binormal to C (Va b = rsnab). For the special case of general relativity,
L = RV1"-__g1167rG, the corresponding expression in Table 1 is recovered. If one, on the

other hand, assumes beforehand that S oc A, the Einstein field equations must hold

(Jacobson 1995).

For generalisations of the laws of black hole mechanics to cases where non-

abelian matter fields are present I refer to Heusler (1996), and the references
therein.

For completeness I want to mention another, different, analogy between black
holes and statistical mechanics: Choptuik (1993) discovered through numerical

studies that if a spherical wave packet of a massless scalar field collapses, there

exists a critical parameter (characterising the strength of the ensuing gravita-
tional self-interaction of the field) above which no black hole forms. In the vicinity
of this critical parameter there is a universal relation for the black hole mass like

in the vicinity of a critical point in statistical mechanics.

2.2 Hawking Radiation

The analogies between ordinary thermodynamics and black hole mechanics, sum-
marised in Table 1, were first regarded as purely formal, since classically a black

hole cannot radiate (it behaves like an ideal absorber). Can quantum theory
change this conclusion? One could imagine that TBH oc h and SBH oc h-1; in

1 From now on we set c = 1.
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fact, from dimensional arguments one recognises that to achieve TBH 54 0 one

would have TBH oc hrIkB and SBH oc kBAIGh, since no other fundamental

constants are at one's disposal (at least within standard physics).
Using quantum field theory on a curved background spacetime, Hawking

(1975) was able to show that black holes do in fact radiate and have a finite

entropy. The temperature is

TBH _-

hK
(2)

27rkB

and the entropy therefore from the First Law

SBH _

kBA
(3)

4Gh

This is a very general result, since no use of particular gravitational field equa-
tions was made.

This is the reason why black hole thermodynamics seems to hold in a much wider

framework, see (1). One there has the formal expression SBH = kBSIh, which would
thus give a general local geometric notion of black hole entropy. However, no quantum
field theoretical calculation has been made to justify this interpretation.

For later convenience I give the explicit expressions for a Reissner-Nordstrbm
black hole (a charged spherically symmetric black hole),

TBH
h

1
q4

(4)
87rkBGm R4

0

where

Ro Gm + V(Grn)2 - q2 (5)

is the radius of the event horizon. The entropy is

kB 2SBH
Gh

7rRo (6)

An extremal hole is defined by JqJ = Gm; its temperature thus vanishes, while
its entropy appears to be nonvanishing (and not a constant). It thus seems as if
Planck's version of the Third Law were violated, but the situation for extremal
holes is more subtle, as will be discussed in Sect. 3. Holes with JqJ > GM exhibit
a naked singularity and are therefore generally excluded from consideration,
although their role within quantum gravity is unclear.

How can one interpret Hawking radiation? The central point is that the
notion of vacuum (and therefore also the notion of particles) loses its invariant

meaning in the presence of a dynamical background. Incoming modes of the

quantum field are redshifted while propagating through the collapsing geometry,
which is why the quantum state of the outgoing modes is different. If the initial
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state is a vacuum state, the outgoing state contains "particles". The redshift
is especially high near the horizon, where the modes spend a long time before

escaping to infinity. This is the reason why Hawking radiation is present very
long after the collapse is finished for a comoving observer, contrary to what
one would naively expect. The presence of the horizon is also responsible for
the thermal nature of the radiation, since no particular information about the
details of the collapse can enter. It turns out that the vacuum expectation value of
the energy-momentum tensor of the quantum field is negative near the horizon,
corresponding to a flux of negative energy into the hole (this is the basis for
the pictorial interpretation of the Hawking effect, where one partner of a pair of
virtual particles can fall into the hole, thus enabling the other partner to become
real and escape to infinity, where it can be observed as Hawking radiation). For
details of this scenario, I refer to e.g. Wipf (this volume), 't Hooft (1996, and
this volume), Birrell and Davies (1982), Wald (1994), and the references therein.
The negativity of this expectation value is, like the Casimir effect, a genuine
quantum feature.

This negative energy flux leads to a decrease of the black hole mass and is

equal to the positive flux of the Hawking radiation at infinity. From a simple
application of Stefan-Boltzmann's law, one can heuristically estimate that the
time t(mp) for the hole to lower its mass to roughly the Planck mass mp =_

V/-h-/G is t(mp) OC M3, where mo is the initial mass of the hole. After this stage0

is reached, the semiclassical calculations used by Hawking (1975) are expected
to break down. It is one of the most interesting open features of a full quantum
gravity to provide a detailed understanding of this final phase.

How can one observe the Hawking effect? It is easy to estimate that for an initial
mass of about one solar mass, mo ;z: m(D, t(mp) ; ,- 1065yrs, which is much longer
than the age of the Universe. Before this time the radiation is much too weak to be
noticeable. The effect can thus not be observed for black holes originating from stellar
collapse. Only if primordial black holes were left over from the Big Bang, would there
be a hope of observation (if the initial mass of the hole is mo  -_ 10"g,2 the final

stages of the primordial hole would occur "today"). The amount of primordial holes is

strongly constrained by the smoothness of the Big Bang, see Sect. 4. It is thus not clear
whether this effect is observable at all. Bousso and Hawking (1997) have investigated
pair creation of black holes during an inflationary phase in the early Universe. By
applying the no-boundary proposal of Hartle and Hawking (1983), they estimated that
no significant number of neutral holes having sufficient initial mass survive inflation.

If "hot" black holes were around, they would contribute to the observed -1-ray
background. Before the final evaporation (about which nothing is known), the spectrum
should according to (2) be thermal. Since this is not true for the -Y-ray background, one

finds from observations that the number of primordial holes must be less than about
104 per pc

3 (Page and Hawking 1976). Wright (1996) estimated from the anisotropy
component of the -y-ray background in the halo of the Milky Way an upper limit of 0.4

explosions of primordial holes per pc
3 and year.

It may also be possible that the existence of primordial black holes can be inferred

The size of such a hole would be only about 10- 13 CM!
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from the variation of quasar luminosities (Hawkins 1993), although this is at present a

contentious issue.

It must be mentioned that there exists an effect analogous to the Hawking
effect in Minkowski space, discovered by Unruh (1976). An observer with uniform

acceleration a observes thermal radiation in the Minkowski vacuum state with

a temperature

TU =

ha
, (7)

27rkB

The common feature with the black hole case is the presence of a horizon which

in particular is responsible for the thermal nature of the radiation. In fact, (7)
directly follows from (2) upon replacing the surface gravity K by a. Israel (1976)
showed that observers whose observations are limited by a horizon see a "ther-

mal vacuum state". This follows after summing over the unobservable states

behind the horizon. It must be emphasised that near the horizon the black hole

geometry resembles the geometry of Rindler spacetime ('t Hooft 1996), which is

the spacetime appropriate for an accelerated observer.

For a quasistationary observer near a black hole (i.e., at a fixed radial distance

r from the hole), Hawking effect and Unruh effect are intertwined through the

formula

TBH
h

(8)
27rkBX(r)

where X(r) is the redshift factor of the black hole geometry, and the spherically-
symmetric case was assumed. (A position-dependent temperature is a typical
feature of gravitational systems.) In the limit r -4 oo the Hawking effect (2) is

recovered (thermal radiation at infinity), while for r -+ Ro, the effect is purely
one of acceleration and (7) is recovered. This "thermal atmosphere" near the

horizon plays an important role in many discussions of black hole entropy, s e

below.
An interesting connection between the Unruh effect and the Schwinger effect

(pair creation of charged particles in an external electric field) was discussed by
Parentani and Massar (1997). This analogy enabled them to associate a formal

entropy with the Unruh effect, SU = kB7rM'1eSh, where S is the constant accel-

erating electric field, and M is the mass of the charged particle. With a = e91M
one has Su oc M' and Tu oc M-', i.e. a formal analogy to the Hawking effect

(although with a different interpretation, since here M refers to the quantum
field, while in the black hole case, m refers to the classical black hole mass).

Can the Unruh effect (7) be observed? Bell and Leinaas (1987) discussed the motion

of electrons in storage rings. For such circular motion, the effect is not purely thermal,
since there is no horizon. Still, this effect leads to a change in the spin polarisation of the

electron, which may be obervable. However, present measurements of this polarisation
are not precise enough to unambigiously uncover such an effect from the data.

A related effect (quantum radiation by moving interfaces between different di-

electrics) could be responsible for sonoluminescence (light emission by sound-driven
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air bubbles in water), which until now remains unexplained, see Eberlein (1996). This

is undecided at the moment.

2.3 Interpretation of Entropy

If black holes can be attributed a genuine entropy, see (3), the question arises
whether a generalised Second Law of the kind

d
(SBH + SM) > 0 (9)

dt

holds, where SM denotes the entropy of ordinary matter. This was investigated
in many special situations, and numerous gedankenexperimente have shown that

(9) in fact holds, i.e. that there exists no perpetuum mobile of the second kind
in black hole physics. A typical situation is one where a box containing thermal
radiation (this maximises the matter entropy) is lowered in a quasistationary
manner towards a black hole, into which the radiation is then thrown, see Beken-
stein (1980), and Israel (this volume). Unruh and Wald (1982) have shown that
there is a minimal change of entropy if the box is opened at the floating point
given by the Archimedean principle (weight of box is equal to the buoyancy from
the Unruh radiation), which is just enough to save the Second Law (9). In this
discussion the relation (8) plays an important role.

Frolov and Page (1993) have given a proof for the generalised Second Law (9)
under the assumptions that one remains within the semiclassical approximation
and that a special initial state (no correlation between modes coming out of the

past horizon and modes coming in from past null infinity) is chosen. The choice
of a special initial state is of course a necessary prerequisite for any derivation
of a Second Law, see Zeh (1992) and Sect. 4.

The above discussion remains fully within the context of phenomenological
thermodynamics (similar to discussions in the last century before the advent of
the molecular hypothesis). A most interesting question is then whether SBH can

be derived from quantum statistical considerations,

SBH - -kBTr(Plnp) =_ Ssm (10)

with an appropriate density matrix p. This is a key issue in the process of under-

standing black holes in quantum gravity. Does black hole entropy, for example,
correspond to the large number of states which may be hidden behind the hori-
zon? Or does it correspond to the large number of possible initial states? Where is

the entropy located (if at all)? These question may indicate the kind of questions
that arise.

Using a flat space example (with a surface that separates two regions and
that mimics a horizon), Bombelli et al. (1986), and Srednicki (1993) have argued
that the entropy is located near the horizon. This may also be suggested by
the presence of the thermal atmosphere there, see the discussion after (8). In
the black hole context, this was investigated by Frolov and Novikov (1993).
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They showed that by counting internal degrees of freedom one gets SSM oc A.
All these authors found, however, a divergent prefactor. Although lying inside,
these degrees of freedom are located mainly in the vicinity of the horizon. An

attempt to show that (10) can be derived from the number of possible initial

configurations of the hole was made by Zurek and Thorne (1985).
A concrete realisation of the ideas of Frolov and Novikov (1993) was done

by Barvinsky, Frolov, and Zelnikov (1995). They consider a quantum state for
the black hole and make the ansatz that this state is constructed from the

no-boundary proposal of Hartle and Hawking (1983). The wave function is de-
fined on three-dimensional geometries and matter fields thereon, see Sect. 3. The

three-geometry is taken to be the Einstein-Rosen bridge Z =_ , X S2.3 The den-Ip

sity matrix pi, of the black hole is then obtained from this pure state by tracing
out all degrees of freedom outside the horizon. For the statistical mechanical

entropy this leads to

Ssm kBTr (pi,, In pi,) - kB
A

(11)3607r12

where 1 is a cutoff parameter (proper distance to the horizon). One recognises
that one gets a divergent result for I -+ 0. (Taking for 1 the Planck length
1P =- v _G_h would yield a result proportional to (3).) It is speculated that a finite
result is obtained after the quantum gravitational "uncertainty" of the horizon
is taken into account, see also Sect. 4.

Since

Tr (pi, In pi,) = Tr (p,,,t In p,,,t)

(see e.g. p. 297 in Giulini et al. (1996)), the result S oc A also follows in ap-
proaches where the degrees of freedom lie outside the horizon. An example is the
"brick wall model" of 't Hooft, (1996), see also his contribution to this volume.

The above result by Barvinsky, Frolov, and Zelnikov (1995) arises entirely
from the "one-loop level" of the wave function (that is the level of the WKB

prefactor). Usually, however, SBH, Eq. (3), is recovered solely from the classical

action, which corresponds to the "tree level" of approximation. Since this latter

type of derivation plays a crucial role in many discussions, and will in particular
be of some relevance in Sect. 3, a brief overview will now be given.

The origin of these discussions goes back to Gibbons and Hawking (1977)
who extended the analogy between path integrals and partition sums to gravita-
tional systems. This analogy, on the other hand, was introduced within ordinary
statistical mechanics by Feynman and Hibbs (1965).

Consider the partition sum of the canonical ensemble,

e
-,3F =- Z = Tre-0 ,

, (12)

It is shown that this state is equal to the so-called Hartle-Hawking vacuum state

which is relevant for eternal holes, see Hartle and Hawking (1976). This thus provides
an example where both types of "Hartle-Hawking" agree.
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where,3 = (kBT)-', and F is the free energy. On the other hand, the quantum
mechanical kernel of the evolution operator reads

G(x, t; x, 0) = (xie-itHlhlXf ) = f Dx(,r) eiS[x(,r)]Ih1 (13)

where also its expression in terms of path integrals is given (the paths going
through x' at time 0 and through x at time t). For simplicity, I have suppressed
all indices which may be attached to x.

The partition sum Z can be evaluated in this way, if one transforms t -+ -i0h
and performs a trace:

z = f dx G(x, -i0h; x, 0) = f Dx(-r) e-I1x(-)1/h
. (14)

The paths go now from x at "time" 0 back to x at "time" Oh. (I denotes the

euclidean action.) To express Z in this way is especially suited for perturbation
theory, see Feynman and Hibbs (1965). If the Hamiltonian has the standard form

'62
+ V( ) (15)

2m

one finds in perturbation theory (the "small" parameter being M) for the fr e

energy the expression (see standard books on statistical mechanics)

F = F0 +
h2,02

(V' (X)2 (16)
24m

where the expectation value is performed with respect to the canonical ensemble.
The first term, F0, gives the classical value for the free energy ("tree level"). It

follows from evaluating the classical action upon classical trajectories. Because

the action contains an integration from 0 to Oh, for small,3h (corresponding to

h -+ 0 or T -4 oo) the result for F0 is independent of h. The second term in (16)
describes the "one-loop level" of the perturbation. It follows from an evaluation

of the quadratic fluctuations around the classical action. (There is no term linear

in h.)
If Z (or F) is known, all other thermodynamic quantities (in particular the

entropy) can be calculated. The mean value of the Hamiltonian is

E
9 In Z

(17)

the entropy is given by

S = kB (In Z +,3E)
E-F OF

(18)
T (9T

One also has S ;zz kB In g(E), where g(E) is the number of states in the energy
interval given by the mean square deviation of the energy. The specific heats can
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be inferred from second derivates of the partition sum,

C = kBO2
92 In Z

- kB (, AH) 202 = _0(9S (19)
(902 (9,3

Gibbons and Hawking (1977) now used a (formal) quantum gravitational
path integral to evaluate the partition sum in the gravitational context, see

also Hawking (1979) and Hawking and Penrose (1996). In contrast to the above

standard context, the euclidean viewpoint is there assumed to be fundamental

and not just a convenient rewriting of the original lorentzian theory.
The path integral cannot, of course, be evaluated exactly (and it is unclear,

whether it can be rigorously defined in quantum gravity). One can, however,
resort to a steepest descent (saddle point) approximation, where only the first

(and sometimes the second) contribution is taken into account. The first contri-

bution is just the classical action evaluated for a classical solution of Einstein's

equations. The next order takes into account the standard WKB-prefactor.
The euclidean action of vacuum general relativity without cosmological con-

stant reads

d4x R ,Fg +
1 f d3X (K - KO) V'h (20)

167rG f 87rG

In the volume term, R denotes the four-dimensional Ricci scalar, and g the

determinant of the four-dimensional metric. In the boundary term, K denotes the

trace of the extrinsic curvature, and h the determinant of the three-dimensional

metric. For purposes of regularisation in the asymptotically flat case, the trace

of the extrinsic curvature K' of the same boundary embedded in flat space has

to be subtracted.

If one considers spherically symmetric uncharged black holes, one has to

evaluate (20) for the euclidean Schwarzschild solution (the generalisation to q : 0

is straightforward). For this solution R = 0, and there is thus no contribution

from the volume term. The whole contribution (which I shall call I*) thus arises

from the boundary which here is the t-axis times a sphere of large radius. This

is a typical feature of black hole physics, which we shall encounter again in the

course of this lecture.

To evaluate the partition sum one has to start from the expression (14),
where one has to sum over all four-dimensional metrics instead of just paths
x(T). In the saddle point approximation one has (denoting with g symbolically
the four-dimensional metric),

z - Dg(x)e-I1g(x)11r1   exp(-I*/h) = exp (21)f ( 167rGh)
It is due to the fact that only the boundary term of the euclidean action con-

tributes to (21), that the lowest order approximation of the path integral (the
"tree level") depends already quadratically on 3. As one recognises from (16)
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and the discussion following it, in the standard situation 0 occurs quadratically
only at the next order.

From (17) one immediately finds

E =

ho
= 'M (22)

87rG

which leads to the expression (4) for the temperature (with q = 0). From (18)
one finds for the entropy

S = kB (In Z + /3m)
h'32

-

kBA
= SBH (23)

167rG 4Gh

If In Z had only a linear dependence on 3, the entropy would turn out to be

zero.

From (19) one finds C = _02 h/87rG and thus a negative specific heat! This

is in particular in conflict with the positivity Of (,Afj)2 und means, of course,
that the black hole is unstable in asymptotically flat space, as can immediately
be inferred from the inverse mass dependence of the Hawking temperature (4).
As such, this is not very surprising, since instability is typical for gravitational
phenomena (Zeh 1992). This negativity is therefore not an artifact of the tree-

level approximation.

Davies (1977) showed that for rotating or charged holes, the specific heat can

become positive for J/m ;- ' 0.68Gm (rotating holes, where J is the angular momentum)
and q Z 0.86Gm (charged holes).

In the attempt to find a thermodynamically stable situation, Gibbons and

Perry (1978) considered a microcanonical ensemble of a black hole immersed in

a bath of radiation with fixed volume: They found that at a sufficiently high
energy density a black hole will nucleate from a box containing radiation, in the

same way as a liquid drop can condense out of saturated vapour. However, to

obtain stability the black hole mass m must be about 98% of the total energy,
which means that the radiation cannot serve as a heat bath for the hole.

In a canonical ensemble description, the specific heat can be made positive if

the black hole is put into a box (York 1986, 1991). At the boundary of the box,
boundary conditions must be specified, i.e. in the Schwarzschild case one can fix

the temperature of the box and its radius rB. It follows then that stability can

be achieved for 2Gm < rB < 3Gm, Le. only for a very small box.

Alternatively, one can use a microcanonical description, where the energy

(and other extensive variables) are fixed at the boundary (Brown and York 1993).
This is very natural for gravitating systems where energy can be expressed as

a surface integral. Instead of the euclidean path integral (14) for the canonical

partition sum, one can express the density of states v(E) directly as a lorentzian

path integral,

v(E) f Dx (t) eiSE[X(t)11r1
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where SE is Jacobi's action in which the energy is fixed. The sum goes over

all paths that are periodic in real time. This path integral may be defined even

in cases where the canonical partition function (which follows via an integral
transform) is divergent. Brown and York (1993) showed that Inv ;Zz A14Gh, as

long as the black hole can be described semiclassically by any real stationary
axisymmetric black hole.

If the hole is charged, one must in addition fix the charge at the boundary
or, alternatively, the electric potential, see Braden et al. (1990).

IYer and Wald (1995) gave a comparison between the Noether charge approach, see

(1), and various euclidean approaches. They showed that the results agree in their re-

spective domains of applicability, see also Brown (1995). It is interesting that exp(SBH)
also gives the enhancement factor for the rate of black hole pair creation relative to

ordinary pair creation, in accordance with the heuristic interpretation of this factor as

the number of internal states of the hole.

Can these derivations of black hole entropy at the tree level be reconciled
with the above-mentioned derivations at the one-looP level, see (11)? Problems
arise due to the UV-divergencies connected with one-loop calculations: For renor-

malisation one needs to subtract the infinite quantity SBH(Gb,,re) evaluated at

the "bare" gravitational constant Gbare, a quantity that has no clear statisti-
cal mechanical meaning. As Frolov, Fursaev, and Zelnikov (1997) have shown,
this difficulty can be avoided in theories where G-1 - 0, such as Sakharov's

bare -

induced gravity, see also Frolov and Fursaev (1998) for a review: If one includes
there non-minimally coupled scalar fields or additional vector fields, one obtains
a finite entropy that is equal to SBH. In induced gravity, the dynamical degrees
of freedom of the gravitational field arise from collective quantum excitations of

heavy matter fields. The same fields produce SBH, since the gravitational action
is already itself a "one-loop effect". This result may also indicate why superstring
theory, another "effective theory of gravity", allows one to reproduce SBH from
the counting of quantum states, see Sect. 4.

It was the intention of this section to give convincing arguments that black
holes must be quantum objects and that they can be fundamentally understood

only in the framework of quantum gravity. Before I shall discuss some approaches
to quantum gravity in more detail, I want to remark that one can already spec-
ulate from the above results about some possible features of the full theory. One
result of such a speculation is the intriguing feature of a possible area (and thus

mass) quantisation for a black hole, see e.g. Bekenstein (1997), and the references
therein. It was suggested from heuristic considerations that

A = 167r(Gm)' = 4G (In 2) hn, n E IN (24)

This would already in the semiclassical theory change drastically the spectrum of
black hole radiation. For example, no quanta would be emitted with frequencies
lower than some fundamental frequency (In 2)/87rGm, in contrast to the thermal

nature of Hawking radiation. One could thus test this effect of quantum gravity
already for m > mp (provided that primordial holes exist).
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The result (2) of a thermal spectrum of black hole radiation was obtained in

the semiclassical limit, where gravity is treated classically. If it were true even in

the full theory of quantum gravity, it would mean that "information" were lost

in the following sense: Since one can in principle start from any initial quantum
state (even a pure one), its exact evolution into a thermal state would contradict
the unitary evolution law of standard quantum theory. In this case, a theory of

quantum gravity would possess some radical new features. Since, however, the

full theory is not yet known, the answer to this problem of information loss is also

not yet known (see, for example, the review in Giddings 1994). This "problem"
may, however, serve as a useful leitmotif in the search for a full theory. How

even the semiclassical limit might be altered has been mentioned in the context

of (24). The effect of quantum gravitational corrections on this information loss
will be briefly discussed in Sect. 3.2.

3 Black Holes in Canonical Quantum Gravity

3.1 A Brief Introduction into Canonical Gravity

Canonical quantum gravity is obtained via the application of standard canonical

quantisation rules to the theory of general relativity (or some other classical the-

ory, but I shall restrict myself to general relativity). Since this does not provide
a unified description of all fields, it is expected that the resulting framework is

only an effective theory. There is, however, the hope that canonical quantum
gravity may reflect many of the features of a genuine quantum theory of gravity.
Its formulation must be intrinsically non-perturbative, since general relativity
is known to lead to a non-renormalisable quantum theory at the perturbative
level. A perhaps more serious candidate for a genuine quantum theory of grav-
ity unifying all interactions, superstring theory, is briefly described in the next

section.

The canonical framework assumes that the classical spacetime M is glob-
ally hyperbolic, M = Z x IR, such that a 3 + I decomposition (a foliation into

spacelike hypersurfaces) can be performed. This is already of relevance for the
classical theory because it allows one to pose a well-defined Cauchy problem
(e.g. in numerical relativity, see the contribution of Seidel to this volume). A
3 + I formulation is required because the canonical approach is a Hamiltonian
formulation of the theory. Due to the four-dimensional diffeomorphism invari-

ance ("coordinate invariance" in spacetime), the classical theory contains four
constraints at each space point, one Hamiltonian!constraint,

W ; ,- 0, (25)

and three spatial diffeomorphism constraints ("coordinate invariance" on the

three-dimensional spatial hypersurface Z),

A,   0. (26)
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Here, as usual,  z-, denotes the weak equality in the sense of Dirac.

The canonical configuration variable can be chosen to be the three-dimensional

metric hab(i) on Z, and the canonical momentum is then a linear function of the

extrinsic curvature of Z. To this one can add any matter fields in the standard

manner. This constitutes the traditional, geometrodynamic, approach. Alterna-

tively, one may choose a complex connection or so-called loop variables on Z for

the configuration variables. This brings in many formal similarities to Yang-Mills
theories. I want to emphasise that the constraint structure (25, 26) is typical for
all versions of canonical theories that possess a diffeomorphism invariance on

the classical level, even if the specific form is different. This is the basis for the

hope that these versions have important common features. Also superstring the-

ory has a constraint structure, although its interpretation is somewhat different
from here.

In the following I want to restrict myself to the quantisation method proposed
by Dirac. This means to formally transform the above constraint equations into

operator equations acting on physical states T1,

-hp 0 (27)

and

baP 0 (28)

The wave functional Tf depends, in the geometrodynamic approach, on the three-

metric (as well as on non-gravitational fields), in the other approaches mentioned
above on the complex connection or on loop variables.4 Due to the constraints

(28), the wave functional is invariant under three-dimensional coordinate trans-

formations. This is often indicated by writing Tl['9], where 1!9 means "three-

geometry", although this is a loose notation, since P cannot explicitly be given
in this form.

If space is compact, there are no further constraints. If not, additional con-

straints arise from variables living at boundaries. This will be of particular rel-

evance for our treatment of black holes, see Sect. 3.2.

It cannot be the purpose of this article to give a detailed introduction into this

approach and its problems. A comprehensive reference is Ehlers and Friedrich

(1994). A recent report on the connection and loops approaches can be found, for

example, in Ashtekar (1997); a recent report on conceptual problems in Isham

(1997). A comprehensive review of canonical quantum gravity as applied to

cosmology is Halliwell (1991). The black hole examples discussed below may
also be thought to give illustrative examples for the full framework.

A helpful analogy between ordinary (quantum) mechanics and (quantum)
general relativity is given in Table 2.

The most important conceptual lesson from the above comparison is that

spacetime has no fundamental meaning in canonical quantum gravity, in the

' In the latter cases there are also additional constraints coming from triad rotations.
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Table 2 Comparison of mechanics and general relativity

Mechanics of one particlel General relativity

position q geometry 3g of a

three-dimensional space

f3g(t)j 4gtrajectory q(t) spacetime

uncertainty between uncertainty between

position and momentum "space and time"

(three-geometry and extrinsic curvature)

T, 3 g, t) 3 g]ip (q, t)

same way as a particle trajectory has no fundamental meaning in quantum
mechanics. This fact lies behind the so-called "problem of time" in quantum
gravity - the absence of any external time parameter in the constraint equations
(27, 28), and the related problem of which Hilbert space (if any) to choose

in quantum gravity. (This is way the quantum gravitational wave function in

Table 2 is t-independent.) To a large extent, these issues are open, see e.g. Kiefer

(1997b). Fortunately, in the black hole case, the "rest of the Universe" can be

assumed to be in a semiclassical regime where a concept of time exists, so that

some of the above conceptual problems don't have to be dealt with in the first

place. These problems are, however, relevant if the whole Universe including the
black hole is described in quantum terms, see Sect. 4.

A frequently employed approximation scheme is to perform a semiclassical

expansion of the equations (27, 28), see Kiefer (1994). One writes the full wave
functional as Tz =- exp(iS/h) with some arbitrary complex function S which is

expanded into powers of the gravitational constant: S = G- 1 So + S, + GS2 +. - - -

This is then inserted into (27, 28), leading to equations at consecutive orders of
G. It must be emphasised that this can be done only in a formal way, since it

is unclear how to rigorously define the equations (27, 28). For finite-dimensional
models it was shown by Barvinsky and Krykhtin (1993) and Barvinsky (1993)
how up to "one loop" a consistent factor ordering and a consistent Hilbert space
structure can be obtained. The important open issue is to find a consistent,
anomaly-free, regularisation for their equations in the field theoretic case.

The highest order (Gl) yields the gravitational Hamilton-Jacobi equation for

So. This is equivalent to the classical Einstein equations and corresponds to the

"tree level" of the theory. A special solution So thus corresponds to a family
of classical spacetimes. The next order (G') leads to a functional Schr8dinger
equation for non-gravitational fields in a given background. It corresponds to the
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44one-loop" limit of quantum field theory in an external background, the limit in

which the Hawking radiation is derived. Higher orders in G then lead to genuine
quantum gravitational correction terms as well as back reaction terms from the

non-gravitational fields onto the semiclassical background.

The approximation scheme sketched above is not unique. Alternative schemes can

be found, e.g., in Bertoni, Finelli, and Venturi (1996), and Kim (1997). They differ
from the above in the treatment of the back reaction of the non-gravitational fields.

The next section is devoted to the application of canonical methods to a

particular situation: spherically symmetric black holes.

3.2 Quantisation of Spherically Symmetric Black Holes

The first model which I shall briefly describe is the case of spherically symmetric
black holes. I shall begin with the so-called "eternal hole", where only the grav-
itational degrees of freedom (and, in the Reissner-Nordstr6m case, the electro-

magnetic field) are taken into account. The more realistic case where additional

dynamical fields (such as a scalar field) are present is discussed thereafter.

The eternal Schwarzschild hole was first discussed by Thiemann and Kas-

trup (1993), Kastrup and Thiemann (1994) within the connection dynamical
approach and then by Kuchaf (1994) in the geometrodynamical approach, see

also Cavagli. , de Alfaro, and Filippov (1996). 1 shall follow the geometrodynam-
ical approach and generalise it to include the Reissner-Nordstr6m case, see also

Louko and Winters-Hilt (1996). "Eternal" refers to the time-symmetric case

where both a past and a future horizon are present ("complete Kruskal dia-

gramme"). Such holes cannot result from a collapse. Although thus being unre-

alistic from an astrophysical point of view, eternal holes provide a useful (and
relatively simple) framework for questions of principle.

Starting point is the ADM form for general spherical symmetric metrics on

IR X IR X S2:

dS2 = -N2 (r, t) dt2 + A2 (,r, t)(dr + N'(r, t)dt)2 + R2(r, t)dQ2 (29)

The lapse function N encodes the possibility to perform arbitrary reparametri-
sations of the time parameter, while the shift function Nr is responsible for

reparametrisations of the radial coordinate (this is the only freedom in perform-
ing spatial coordinate transformations that is left after spherical symmetry has

been imposed). The parameter r is only a label for the spatial hypersurfaces; if

the hypersurface extends from the left to the right wedge in the Kruskal dia-

gramme, one takes r E (_ oo, oo). If the hypersurface originates at the bifurcation

point where path and future horizon meet, r E (0, oo). If one has in addition a

spherically symmetric electromagnetic field, one makes the following ansatz for

the one-form potential:

A = 0(r, t)dt + F(r, t)dr (30)
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In the Hamiltonian formulation, 0 as well as N and N' are Lagrange multipliers
whose variations yield the constraints of the theory. Variation of the Einstein-

Hilbert action with respect to N yields the Hamiltonian constraint (25) which
for the spherically symmetric model reads

G Ap2 PAPRA
- G + + G-'VG ;z 0 (31)

2 R2 R 2R2

where the gravitational potential term reads, explicitly,

RR" RR'A' R 2 A
VC = - - + - (32)

A A2 2A 2

(A prime denotes differentiation with respect to r.) Variation with respect to

N' yields one (radial) diffeomorphism constraint (26),

D, == PRR' - AP ;z: 0
. (33)

One recognises from this constraint that R transforms as a scalar, while A trans-

forms as a scalar density.
Variation of the action with respect to 0 yields as usual the GauB constraint

9=P P: o . (34)

The constraint (33) generates radial diffeomorphisms for the fields R, A and their
canonical momenta. It does not generate diffeomorphisms for the electromagnetic
variables. This can be taken into account if one uses the multiplier  = 0 - N,r
instead of 0 and varies with respect to  (Louko and Winters-Hilt 1996), but for

our purposes it is sufficient to stick to the above form (33).
The model of spherical symmetric gravity can be embedded into a whole class

of models usually referred to as "two-dimensional dilaton gravity theories". This

terminology comes from effective two-dimensional theories (usually motivated

by string theory) which contain in the gravitational sector a scalar field (the
"dilaton") in addition to the two-dimensional metric (of which only the confor-
mal factor is relevant). Interest in such models arose after Callan et al. (1992)
studied one model in detail (now called the CGHS model), in which they ad-
dressed the issues of Hawking radiation and back reaction'. This was facilitated

by the fact that this model is classically soluble even if another, conformally
coupled, scalar field is included. The canonical formulation of this model can be

found, e.g., in Louis-Martinez, Gegenberg, and Kunstatter (1994) and Demers
and Kiefer (1996). The dilaton field is analogous to the field R from above, while
the conformal factor of the two-dimensional metric is analogous to A.

The dilaton model contains one non-trivial parameter, the constant A which has the

dimension of an inverse length. The corresponding Hawking temperature and entropy
are given by, respectively,

TBH -=

hA
SBH -

2 7rkBM
2-7rkB hA

A detailed review of two-dimensional black holes is Strominger (1995).
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Note that the temperature is here independent of the black hole mass m, and that

therefore the entropy is linear in m. This is also the reason why some aspects of this

models are unrealistic from the four-dimensional point of view.

Coming back to the spherically symmetric model, consider first the boundary
conditions for r -4 oc. (If r E (-oo, oo), there are analogous conditions for

r -+ -oo which will be ignored here, see Kuchaf (1994).) For r -4 oo one has in

particular

A(r, t) -4 1 +
GmM

I
R(r, t) N -+ N (t) (35)

r

as well as

Pr (r, t) -+ q(t), 0(r, t) -4 0(t) (36)

From the variation with respect to A one then finds the boundary term

G f dt Nbm. In order to avoid the unwanted conclusion N = 0 (no evolution at

infinity), one has to compensate this term in advance by adding the boundary
term

-G f dt Nm

to the classical action. Note that m is just the ADM!mass. The need to include

such a boundary term was recognised by Regge and Teitelboim (1974). Similarly,
for charged holes, one has to add the term

- f dt Oq

to compensate for f dt 06q which arises from varying Pr. If one wished instead to

consider q as a given, external parameter, this boundary term would be obsolete.

As long as restriction is made to the eternal hole, appropriate canonical

transformations allow to simplify the classical constraint equations considerably
(Kuchaf 1994, Louko and Winters-Hilt 1996). One gets

(A, PA; R, PR; F, Pr) --+ (M, PM; R, Piz; Q, PQ) .

In particular,

p2 2z 2

F + P R R'
M (r, t)

2R
+

2 A2
MM (37)

r
'r
-4Q (r, t) P
-4 00

q (t) (38)

(I note that R = R and that the expression for PR is somewhat lengthy and will

not be given here.)
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The new constraints, which are equivalent to the old ones, read

M, = 0 M(r, t) = m(t), (39)
Q, = 0 Q (r, t) = q(t), (40)
PIZ = 0 (41)

Note that N(t) and ( (t) are prescribed functions that must not be varied; oth-

erwise one would be led to the unwanted restriction that m = 0 = q. This can

be remedied if the action is parametrised, bringing in new dynamical variables,

N (t) i- (t),
0(t)  (t) - (42)

Here, r is the proper time that is measured with standard clocks at infinity,
and A is the variable conjugate to charge; A is therefore connected with the

elctromagnetic gauge parameter at the boundaries. In the canonical formalism

one has to introduce momenta conjugate to these variables, which will be denoted

7r, and 7r,\, respectively. This, in turn, requires the introduction of additional

constraints linear in momenta,

C, = 7r, + Gm,,:z 0, (43)
C,\ = 7r,\ + q ; -, 0 (44)

which have to be added to the action:

-G f dt m- f dt (7r,- - NC,), (45)

- f dt q f dt (7r,\  - OC,\) (46)

The remaining constraints in this model are thus (41) and (43,44).
Quantisation proceeds then in the way sketched in Sect. 3.1 by acting with

an operator version of the constraints on wave functionals T/[R(r); -T, A). Since

(41) leads to ST11JR = 0, one is left with a purely quantum mechanical wave

function ip(-r, A). The implementation of the constraints (43,44) then yields

h aV,
+ M?P = 0, (47)

h 00
+ qO = 0 (48)

i aA

which can readily be solved to give

0 (r, A) = X(m, q) e (49)

with an arbitrary function X(m, q). Note that m and q are here considered as

being fixed. The reason for this is that up to now we have restricted attention
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to one semiclassical component of the wave function only (eigenstates of mass

and charge). Superpositions of states with different m and q can be made, and

I shall make some remarks on this below.

If the hypersurface goes through the whole Kruskal diagramme of the eternal

hole, only the boundary term at r -- oo (and an analogous one for r -+ -oo)
contributes. Of particular interest in the black hole case, however, is the case

where the surface originates at the bifurcation surface (r -+ 0) of past and future

horizons. This makes sense since data on such a surface suffice to construct the

whole right Kruskal wedge, which is all that is accessible to an observer in this

region. Moreover, this mimics the situation where a black hole is formed by
collapse, in which the regions III and IV of the Kruskal diagramme are absent.

What are the boundary conditions that are adopted at r -+ 0? They are cho-

sen in such a way that the classical solutions have a nondegenerate horizon and

that the hypersurfaces begin at r = 0 asymptotic to hypersurfaces of constant

Killing time (Louko and Whiting 1995). In particular,

N(r, t) = N, (t)r + 0(r3), (50)
A(r, t) = Ao(t) + 0(r2), (51)
R(r, t) = Ro (t) + R2 (t) r2 + 0 (r') (52)

Variation leads, similarly to the situation at r -+ oo, to a boundary term at

r = 0:

-N,Ro (GAo) - 1 6Ro .

If N,  4 0, this term must be subtracted (Nj = 0 corresponds to the case

of extremal holes, jqj = Gm, which is characterised by 9N1,Yr(r = 0) = 0.)
Introducing the notation No - N11A0, the boundary term to be added to the

classical action reads

(2G) - 1 dt NoR2f 0

The quantity

t

Ce dt No (t) (53)f,
ti

can be interpreted as a "rapidity" because it boosts the normal vector to the
ahypersurfaces t = constant, n

,
in the way described by

na (ti) na (t) = - cosh a
, (54)

see Hayward (1993). To avoid fixing No, one introduces an additional parametri-
sation (Brotz and Kiefer 1997)

No (t) (t) (55)
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Similarly to (45,46) above, one must replace in the action

(2G) - 1 dt R2 dt (7r,,& - NoC,) (56)f 0 f
with the new constraint

C
A

';  0 (57)
87rG

where A = 47rR2 is the surface of the bifurcation sphere. One notes that a and0

A are canonically conjugate variables, see Carlip and Teitelboim (1995).
Quantisation then leads to (taking all constraints into account)

(a, 7-, A) = X(A, rn, q) exp
i A

a - m-r - qA (58)
h 87rG

Since A occurs in the state (58), one may suspect that also the entropy comes

into play here, see (3). However, (58) is a pure quantum state, which possesses

vanishing entropy, and A is only part of its phase. The relation to entropy can

only be achieved after an appropriate euclideanisation is performed, compare
Sect. 2.3. This will be done below. (The wave function for a Reissner-Nordstr6m

hole, if an additional complex scalar field is coupled, can be found in Moniz

(1997). In contrast to our model, his situation describes a dynamical evolution.)
The classical equations are found from (58) in the standard way by finding

the extremum of the phase with respect to the parameters. For this to work,
only two of the three parameters A, m, q can be considered as independent. (I
shall choose m and q.) Differentiating the phase with respect to M and setting
the result to zero yields

a = 87rG ( aA
T (59)0M

From Table 1 one recognises the occurrence of the surface gravity r, on the right-
hand side of (59):

a = r,-r (60)

which is just the classical relation for the rapidity, see Brotz (1997). This is not

surprising since it is known that boundary terms in the classical action are im-

portant in the derivation of the First Law of black hole mechanics (Wald 1998).
Generally, conjugate quantities in thermodynamics (extensive - intensive) cor-

respond to conjugate variables in the Hamiltonian formalism.

Differentiating the phase of (58) with respect to q and setting the result to

zero yields

r, aA t9m q
TIA - (61)

87rG 9q q Ro
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another "thermodynamical" relation.' This completes the solution of the eternal

Reissner-Nordstr6m hole.

I shall now turn to the more realistic case where an additional dynamical
field is present. This can be used to "form" the black hole in the first place, and

leads to the emergence of interesting features such as Hawking radiation. It also

provides an interesting application of the semiclassical expansion presented in

Sect. 3.1. 1 denote the scalar field by f, see e.g. Romano (1995), Demers and

Kiefer (1996) and Kuchai et al. (1997) for details of the formalism.

At order G', the total wave functional is of the form

iSg / r"!P ;zz C9 e o (62)

where C9 and Sog depend only on the gravitational (and electromagnetic) vari-

ables. These variables comprise the functions F(r), R(r), A(r) as well as the

boundary variables a, -r, A. The functional V depends, in addition, on the scalar
field f. The important point is that J<- obeys a functional Schr8dinger equation
with respect to the background found from S09.

As in the general case, S9 obeys the Hamilton-Jacobi equation for gravity0

(plus electromagnetic field). An explicit solution reads (Brotz and Kiefer 1997)

Sog dr q.P + G-1AF - G-1
RR'

In
R'1A + FIRfo"O 2 W11A - FIR

+
Aa

- m-r - qA (63)
87rG

where

F = R
R12

+
2M(r)

(64) : A122A2 R

and

M(r) = m
q

(65)
2R(r)

Note that S09 depends parametrically on m and q which are just the mass and

the charge of the hole, respectively. Expression (65) is nothing but the total

energy of the hole. Inspection of (63) exhibits that the electromagnetic part in

(62) from So' is given by

exp i foc", dr.V -A q

This expression can be understood as follows. The electromagnetic potential (30)
changes under a gauge transformations according to

A -4 Odt + I'dr + d = (0 +  )dt + (F +  ')dr (66)
6 It corresponds toOSION = -tilT with p and N = q (N is the particle number
and p the chemical potential.)
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Therefore,

00 00

o

drl'(r) -+

0

drF(r) +  (oo) -  (O)f
Now,  (oo) -  (O) may be absorbed into A, since A itself was interpreted as the

boundary gauge parameter.
Since the full theory is linear, one can perform arbitrary superpositions of

states (62) with different values for m and q. These describe situations where

the hole has neither a definite charge nor a definite mass. However, such super-

positions can only be distinguished from a corresponding mixture if one could

"measure" the variables conjugate to m and q, i.e. r and A. Otherwise, effec-

tive "superselection rules" would result, see Giulini, Kiefer, and Zeh (1995), and

Chap. 6 of Giulini et al. (1996).
Another interesting situation is described by a superposition of the state (62)

with its complex conjugate (this is possible since the full Wheeler-DeWitt equa-

tion is real). Such superpositions may follow in a natural way from appropriate
boundary conditions (Hajicek 1992). It was shown in Demers and Kiefer (1996)
that these superpositions (which can be heuristically interpreted as representing
a superposition of a black hole with a white hole) become indistinguishable lo-

cally from a mixture after the irreversible interaction with the Hawking radiation

is taken into account - a process known as decoherence (Giulini et al. 1996).
How can the Hawking radiation be found from a state such as (62)? This was

clarified in, Demers and Kiefer (1996) in the context of dilaton gravity (the ex-

tension to spherically symmetric gravity should be straightforward). One solves

the functional Schr6dinger equation obeyed by ; in a background describing the

collapse to a black hole. The initial state is taken to be a Gaussian (a "vacuum

state"). During the evolution, this state remains a Gaussian, but with a different

"width". This just expresses the fact, as mentioned in Sect. 2.2, that the notion

of a vacuum becomes ambiguous in such a situation. Using the initial state as the

reference vacuum state also at late times, the evolved state contains "particles"
with respect to that vacuum. One has

(J I ft (k) (67)
exp kB TBH

where ft denotes the "particle number operator" for the mode of wave number

k with respect to the original vacuum. Note that, although -j is a pure quantum
state, the expectation value (67) is a Planckian distribution with respect to the

Hawking temperature TBff. The difference of J<- to a genuine mixture will be

noticed if other expectation values (of "higher order operators") are performed.
For the important case where the surfaces are fixed at the bifurcation sphere,

it turns out that the field f must vanish at this point for the state ; to be

normalisable. Thus, the bifurcation sphere acts like a "mirror" for this field.

This is why the quantum state turns out to be a pure one. Other surfaces which
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penetrate the interior of the hole lead to a mixed state outside after the interior

degrees of freedom are "traced out" (as in Israel 1976).
Can one go beyond the order of approximation (62)? This is in fact possi-

ble, but so far only in a formal way, without addressing in detail the issue of

regularisation (Kiefer 1994). Still, however, qualitative features can be studied.

At oder G1, correction terms to the functional Schr6dinger equation obeyed by
are obtained. Among these terms, there is an imaginary term, iImH,,,, con-

tributing to the effective matter Hamiltonian. In the case of collapse to a black

hole, ImH, < 0 (Kiefer, Mfiller, and Singh 1994). Since the following equation
holds for the density matrix p,

d
([Trp] 2

_ TrP2) = 4Tr QpTrp - P2]ImH,,) (68)
dt

one finds from ImH,,, < 0 that the difference between (Trp)2 and Trp2 decreases,
corresponding to an increase in "purity" for the quantum state. Whether this

may indicate a quantum gravitational "recovery of information" from the hole

can of course only be judged from the full, as yet elusive, theory. This result at

least demonstrates what kind of effects one might expect to see in higher orders

of the semiclassical approximation.
At order G', also back reaction terms from the matter fields (here from

the f-field) onto the gravitational background are found (Kiefer 1994). These

can be evaluated only in special cases, for example in the toy model of a 2+1-
dimensional black hole coupled to a conformal scalar field (Brotz 1998).

An interesting point is of course whether there are situations where the semi-

classical approximation breaks down in the first place. This would mean that

quantum gravity effects can become important below the Planck scale. Keski-

Vakkuri et al. (1995), for example, arrived at the conclusion that the semiclassical

approximation breaks down at the black hole horizon, in the sense that tiny fluc-

tuations of the black hole mass may produce an immense change in the matter

state. The physical implications of this result are not yet fully clear. It can also

not be excluded that anomalies in quantum gravity spoil the above semiclas-

sical limit and demand for an explicit modification of the constraints, see e.g.

Cangemi, Jackiw, and Zwiebach (1996).
I emphasised above that there is not yet any connection with a notion of

entropy for the pure quantum state (58). This can be established after some

"euclideanisation" is performed, see the discussion in Sect. 2.3. How does this

work? From (55) it is clear that the rapidity a is connected with the lapse
function. Therefore, going to the euclidean regime means both -r -+ -i,3h, see

(14), and a -+ -iCfE. Regularity of the line element then demands that aE - 21r

(Brotz and Kiefer 1997). Consequently, the euclidean version of the quantum
state (62) contains the term

exp -Om +
A

(69)4hG)
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There is in addition the euclideanised version of the integral in (63) and the term

containing A -4 AE --::-: -irl)30-
This does of course not yet yield a partition sum. However, after the whole

semiclassical part is evaluated at the classical value for the Hamilton-Jacobi
functional and a trace is performed, one finds by applying (17) that the second
term in (69) is just the Bekenstein-Hawking entropy (3). Alternatively, one can

interpret (69) as directly giving the enhancement factor for the rate of black hole

pair creation relative to ordinary pair creation. Here my focus was just to show
7how the expression for SBH emerges in the canonical formalism.

Consider now the case of an extremal hole, where Iql = Gm. As can be

immediately inferred from the discussion after (52), there is no surface term to

consider, since No = 0. Thus, a - 0, and there is no A-term in (58). This would
also mean that the entropy is zero. Recalling our discussion in Sect. 2.1, this
shows that Planck's version of the Third Law is fulfilled. This result was also
found in a variety of other approaches, see the references in Brotz and Kiefer

(1997). It is not fulfilled in string theory, where S,,,t,,m, = A14hG, see Sect. 4.
It is also not fulfilled for the extreme (Kerr) black hole which occurs in the
transition from the disk of dust solution to the rotating black hole solution, see

Neugebauer's contribution to this volume.
The above derivation of entropy via boundary terms suggests the following

natural interpretation in terms of "missing information". For surfaces which in
the classical spacetime correspond to slices through the full-Kruskal diagramme,
this "information" is maximal in the sense that one can recover the full spacetime
from data on this surface. Since no boundary (except at infinity) is present, the

entropy is zero. For slices that start at the bifurcation sphere, this information is
less than maximal for Schwarzschild black holes and for non-extreme Reissner-
Nordstr6m black holes. They are therefore attributed the entropy A14hG. In

contrast, the maximum information (for the full spacetime up to the Cauchy
horizon) is already available for such slices in the extreme case, as can be eas-

ily recognised from the corresponding Penrose diagramme. Extreme holes are

therefore attributed a vanishing entropy. A somewhat related interpretation was
given in the path integral framework by Martinez (1995). An interesting point
was raised by Ghosh and Mitra (1997) who argued that S,,,t,,,, 54 0 follows
from extremisation after quantisation, while Sextreme = 0 holds for extremisation
before quantisation.

Can the quantisation of mass (or area), as described by (24), be found within
the canonical formalism? This is, unfortunately, an open issue. One can, for

example, postulate Bohr-Sommerfeld type of quantisation rules in the euclidean

theory (Kastrup 1996). This would lead to

nh = 7r,, da =

27r A
da =

A
(70)i fo 81rG 4G

'

This is similar to (24), albeit with a different numerical factor. Whether a similar

' Due to Smarr's formula, (69) is consistent with (21).
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result can be found in the physically relevant lorentzian theory remains open.

Other interesting developments can only be mentioned here. Carlip (1997) was able

to give a statistical mechanical origin for the black hole entropy in the case of a 2+1-

dimensional black hole. There it results from "would-be-gauge" degrees of freedom

becoming dynamical at the horizon. Using the loop approach to canonical quantum

gravity, Rovelli (1996) found that SBH cx A, although with a numerical coefficient

different from (3).

To summarise, canonical quantum gravity can offer the tool to understand

quantum features of black holes such as entropy and Hawking radiation. Still,
however, the main problems are not yet solved: Can the Bekenstein-Hawking en-

tropy for four-dimensional black holes be derived by counting appropriate degrees
of freedom? What is the final evolution of a black hole, after the semiclassical

approximation breaks down?

4 ]Further Developments

In Sect. 3 1 discussed canonical quantum gravity as a possible framework to

understand black holes. A different approach to quantum gravity is superstring
theory. It necessarily contains gravity and gauge theories, and must implement
supersymmetry for reasons of consistency.

Like canonical quantum gravity, string theory follows through the quanti-
sation of a classical theory (a propagating string in some background space-

time), but is itself interpreted in a drastically different way: It is supposed to

give a fundamental theory where all interactions including gravity are unified in

a quantum framework. The background spacetime used in the construction of

the theory plays only an auxiliary role. Like canonical quantum gravity, string
theory suffers from the "problem of time", although this is not always stated

clearly. The notion of spacetime again emerges only in an appropriate semiclas-

sical limit. (The role of the semiclassical expansion parameter is here played by
the string length, see below) .

An important fact in string theory is that consis-

tencY conditions (the absence of a Weyl anomaly) severely restricts the number

of dimensions of this semiclassical spacetime, e.g. to D = 10 for the superstring.
This, then, enforces the implementation of an appropriate mechanism to encurl

the superfluous dimensions in a Kaluza-Klein type manner to avoid contradiction

with observation. Whether the level of canonical quantum gravity, as discussed

in Sect. 3, follows from string theory in an appropriate limit is not yet clear. It

must, however, lead to some quantum gravitational corrections to the ordinary
functional Schr,5dinger equation, and may thus lead to the possibility both to test

the theory and to discriminate it from competitors like the approach presented
in Sect. 3.

A detailed introduction into string theory can be found, for example, in

Polchinski (1994, 1996), and the references therein. Here I only want to briefly
sketch some intriguing recent developments aiming at a derivation of the black

bole entropy (3) by counting quantum states, see Horowitz (1998) for a review.
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String theory contains two important parameters: The string length 1S and the

string coupling g2 = exp(2W). Here, W denotes the dilaton field which appearsS -

in the two-dimensional string action. It gives rise to the string coupling, since

92 appears as a "gravitational constant" in the effective action (arising in theS

semiclassical approximation to lowest order in 1S) for the background spacetime
and background fields. The Planck length, 1p, then appears as a derived quantity,

1P oc gsIs , (71)

and similar relations follow for other "coupling constants". It is important to

note that the semiclassical approximation, and with it the notion of a spacetime
metric, breaks down for curvatures bigger than 1S2.

How does the entropy of a black hole come into play? First, assigning an

entropy to an excited string state by counting its degeneracy, it turns out that
this entropy is (for high excitations) proportional to the energy (mass) of that
state and not to the mass squared. It would thus seem as if a string had not

enough states to yield the entropy of a black hole. The crucial point, however, is

that the Planck length, and therefore the gravitational constant, depends on the

string coupling, see (71). Thus, if gs is increased, Gm is increased, too, and a

black hole is formed at some stage (Horowitz 1998). Comparing, then, the black
hole mass with the string mass at 1S = Ro (Ro is the Schwarzschild radius), it

turns out that the black hole entropy becomes proportional to the string entropy.
A string may thus possess enough states to give the Bekenstein-Hawking entropy.

For a quantitative comparison, one must give a precise calculation. It is most

straightforward in this respect to first consider states which obey a relation
similar to q = Gm in the Reissner-Nordstr6m case (although with generalised
charges). Such states are called BPS states. At weak coupling (gs < 1), one

has bound states of so-called D-branes (Polchinski 1996) in flat space, and the
number of these states can be counted. D-branes are dynamical objects of var-

ious dimensions, which are a necessary ingredient of string theory. As the cou-

pling increases, the BPS-relation between mass and charges is preserved, and
the number of states remains unchanged. For high coupling (gs >> 1), one thus
obtains an extremal black hole with the same number of states. Surprisingly,
its Bekenstein-Hawking entropy exactly coincides with the entropy of the D-
branes in the flat space description (Strominger and Vafa 1996). The original
calculation was for five-dimensional black holes and then generalised to four-
dimensional holes. One may thus interpret the D-branes as giving the desired

microscopic description for the black hole entropy. Since it turns out in this ap-

proach that Sextreme = A14hG - 4 0, string theory leads to a different result than

the canonical treatment presented in Sect. 3.2.

The calculations have been extended to the case of near-extremal black holes

which, in contrast to the extremal ones, exhibit Hawking radiation (here in-

terpreted as the emission of closed strings from D-branes). It could be shown
that even the rate of Hawking radiation agrees with the decay amplitude for the

corresponding D-brane configuration (see e.g. Das 1997). Since all string calcu-

lations preserve unitarity, it seems that there is no violation of unitarity also in
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the black hole radiation. Consequently, there would be no "loss of information".

Of course, to get a non-vanishing entropy in the first place, some coarse-graining
must be involved, and the process of decoherence will again play a crucial role

(Myers 1997). There will thus only be the apparent non-unitarity connected with

the neglect of degrees of freedom be present - the total system evolves unitarily
(Giulini et al. 1996).

Whether the above string result also holds for general black holes, i.e. far away
from extremality (such as for the Schwarzschild black hole), is not yet clear. It

must also be emphasised that all results are obtained in lowest order of Is, i.e. in

the lowest order of the semiclassical approximation where a background structure

is available. The full, non-perturbative, evolution of a black hole therefore still

remains mysterious.
In the semiclassical approximation to canonical quantum gravity, as pre-

sented in Sect. 3, a crucial role for the interpretation of entropy is played by
the presence of boundary conditions at the bifurcation sphere (where the two

horizons in the Kruskal diagramme meet). This, however, cannot be extended to

the full theory in a straightforward manner. The main reason is that the horizon

of a black hole is a classical concept. As I emphasised in Sect. 3.1, the canonical

theory does not possess any notion of spacetime at the fundamental level, in the

same way as ordinary quantum theory does not possess any notion of particle
trajectories in the full theory. A horizon, however, is a genuine spacetime con-

cept. Therefore, the results presented in Sect. 3.2 only hold as far as a notion of

spacetime can be applied at least in some approximation.
That the concept of an event horizon is a classical artifact, becomes especially

obvious in quantum cosmology (Zeh 1992). Consider, for example, the case of

a Friedmann universe that classically recollapses. Since the entropy content of

the present universe is far from maximal, it must have been very tiny at the

big bang - the big bang was extremely smooth (which is why one would not

expect to find many primordial black holes). This led Penrose (1979) to the

formulation of his Weyl tensor hypothesis that the universe is homogeneous at

the big bang, but not at the big crunch. In quantum gravity, however, there is

no external time parameter which could possibly distinguish between big bang
and big crunch. If entropy is small near the big bang, it must also be small near

the big crunch, since both regions correspond to the same region of the quantum
gravitational configuration space. The consequences of this fact for the arrow of

time and for black holes were investigated in Kiefer and Zeh (1995). Entropy
is always growing with increasing size of the Universe, leading to a (formal)
reversal of the arrow of time near the classical turning point. The same boundary
condition of low entropy at small size necessarily leads to the fact that neither an

event horizon nor a singularity (naked or hidden) forms for a black hole. Cosmic

censorship would thus be automatically implemented. Although still speculative,
this scenario at least demonstrates what qualitatively new features emerge from

quantum gravity if one leaves the semiclassical sector.
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Abstract. The scattering matrix approach to the black hole quantization problem
is introduced and further elaborated. There appears to be a general concensus about

the quantum degeneracy of black holes increasing exponentially with the horizon area.

Attempts axe described to reproduce the individual quantum states, in particular by
exploiting an operator algebra that results from considerations of the gravitational
back reaction.

1 Introduction

One would expect that the quantum mechanical properties of a black hole should

follow naturally by applying large scale physics. Only the space-time region at

the side of the observer, the "physical side" of the horizon, should be relevant.

Indeed one can calculate accurately the quantum mechanical effects near a large
black hole, as seen by an outside observer, by first studying what an infalling ob-

server would experience, and then performing the appropriate general coordinate

transformation. As is to be expected from quantum mechanical calculations, one

finds "probabilities": chances that particles of certain types, with certain mo-

menta, energies or other quantum numbers, emerge at certain places. It is when

one wants to interpret these outcomes in terms of some Schr6dinger equation
for the black holes as a whole, that the first genuine problems emerge', 2. In

these lectures, the problems we encounter are exposed, and roads towards their

resolution are explored.

2 The Space-time Metric

of a Black Hole Under Formation

The space-time metric of a stationary, non-rotating and electrically neutral black

hole is the Schwarzschild metric:

ds2 1 -
2M ) dt2 + dr2

r2dS?2 (2.1)
r 1 - 2M/r

where

df22 =- d02 + sin2 0 d02. (2.2)

F.W. Hehl, C. Kiefer, R.J.K. Metzler (Eds.): LNP 514, pp. 451 - 477, 1998
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Here, M stands for Gm
BH1

where G is Newton's constant and MBH is the

black hole mass. Often we will employ the Kruskal coordinates3, which we will

write as (x, y, 0, 0), with

r

2M
- 1) e'/2M = XY; (2.3)(

et12M = X/Y.

In terms of these coordinates we have (see Fig. 1)

dx dy dr dx dy dt
- + (2.4)
x Y 2M (1 - 2M/r) x Y 2M'

ds2
32M3

e-r/2M dxdy + r2df22.
r

The apparent singularity at the horizon, r = 2M, has disappeared. The only true

singularities are at the curves xy = -1, where r = 0. The region Ix > 0, y > 01
is the "outside region", the only region from which distant observers can obtain

any information. The line y 0, where r = 2M, is the "future event horizon";
the line x 0, where also r 2M, is the "past event horizon".

x

Z
P

Y

Fig. I Various coordinates used to describe the Schwarzschild metric. The local light
cones are oriented everywhere as indicated at the left.

In the region r 2M one can write the metric as

ds2
  

16M2
dxdy + 4M2dfl2 (2-5)

e

and with the coordinate substitution

4M
x = Z+T

,

4M
Z-T, (2-6)

/'e-- Y7e
2M(O - 17r) = X 2MO Y,2
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at small X, Y, one finds that in terms of these coordinates space-time is approx-

imately flat:

ds 2 dT2 + dZ2 + dX2 + dy2. (2-7)

The transformation

Z coshr, T = q sinh -r, (2-8)

brings us back to the Schwarzschild coordinates (close to the horizon), apart
from normalization factors:

t12M = 2,r, 8M(r - 2M) - '02. (2.9)

The description of a flat space-time (2.7) in terms of the coordinates (2.8) is

called "Rindler space" 4
.
We see that close to the horizon, the Schwarzschild

coordinates r and t behave as Rindler space coordinates.

To see that black holes can actually be formed by ordinary matter we have

to study time-dependent solutions. For details concerning construction of such
solutions we refer to5. The Penrose diagram for a configuration with both ingoing
and outgoing matter is shown in Fig. 2a. In a classical black hole, there is only
ingoing matter. In a coordinate frame that is flat at some distance from the black

hole, the configuration looks as in Fig. 2b.

a) b)

Fig. 2 a) Spherically symmetric configuration of matter radially moving inward and

outward with the speed of light. b) Spherically symmetric black hole formed by radially
inmoving lightlike matter.
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3 Hawking Radiation', 7

Consider the Minkowski coordinate frame IT, X, Y, ZI, or fT, XI for short, and

a scalar field  P(T, X). Let this field simply obey a Klein-Gordon equation,

(,92 _ M2),p = 0. (3-1)

The quantum theory is written in the Heisenberg representation, which means

that the states 1,0) are space-time independent, but the fields are operators de-

pending both on space and on time. Usually, a complete set of solutions of (3.1)
is written in terms of the Fourier modes with respect to the Minkowski space

coordinates, and one gets

!P (X, T) =

d3k (a(k)eik.X-ikoT + at(k)e-ik.X+ikoT), (3.2)f  /_20_(k)(27r)3
, (X, T) =

-ikod3k (a(k)eik-X-ikoT _ at (k) e-ik.X+ikoT). (3-3)f V/ _k_O(k)(27r)3

Here ko (k) = v/k--2-+m2, and the transformation from a and at to 4i and  has

been designed such that the following commutation rules are maintained:

[4i (X, T), 4i (X', T) ] = 0
, [(P (X, T),  (X', T) ] = i63 (X _ XI) , (3.4)

[a (k), a(k) ] = 0
, [a(k), at(k)] - S3 (k - k') - (3-5)

Not only do these commutation rules ensure that at and a act as creation and

annihilation operators, but also the time dependence in (3.2) and (3.3) implies
that the objects created and annihilated carry an amount of energy equal to ko.

The operator HM that generates boosts in the time coordinate T,

&P
-

-i [ P, HM] , (3-6)
o9T

is the Minkowski-Hamiltonian

Hm = f Wm (X)d3X f d3k ko (k) at (k) a(k) (3-7)

We need first the transition to light-cone coordinates, and we define

a (k) Vk-0 = a, (k, k+) vFk-+
. (3-8)

where k+ -  , (ko + k3 ), and k is the transverse component of k. Since72Y

,9k+ k3 k+

o9k3
I+ -

-

7 p = V O + k32 + m2 (3.9)
-vF2 (

I-L
) V
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the new operators a,, at are normalized by

[a, (k, k+), at, (k', k+)] = 62 k')6(k-1- - k+). (3-10)

To obtain operators a2 that transform neatly under time boosts in Rindler

space (i.e., Lorentz boosts in flat space-time), we define them as Fourier trans-

forms with respect to ln(k+):

-1/2
" dk+

+ iw In ( )
a2 (k, w) = (27) al(k,k )e 1 (3-11)fo v/"k-+

of which the inverse is:

al(k,k+)vfk+ = (27r) -1/2
00

dwa2 (k, w)e-iw In
(3.12)

-00
f

With the normalization factors chosen in (3-11, 12), the operators a2 and at
2

again obey

[a2 w), at(k1'W1)] - 62(k _ kt)j(W _ UI) (3-13)2

Let the Minkowski-Hamiltonian HM obey Eq. (3.7). The Rindler-Hamiltonian,
HR is then defined to be

HR = H, - HII
,
H,

-
d3X L0,hM ; HII - d3X IL01,HM (3-14)R R R R

g>0 'Q<0

(note that the Rindler Hamiltonian HR is dimensionless). If the region LO > 0 (see
Fig. 1) is called quadrant I and Lo < 0 quadrant II, we see that all observables

made of fields in quadrant Il commute with H, and vice versa. One finds that
R

00

HR dw w at (k, w) a2 (k, W) (3-15)2
-00

R fooc, I R foo" IH, dwwat(k,w)aj(k,w) HII at, (k, w) aii (k, w)

where aj and ajj are related to a2 and at as follows:
2

a, (k, w) 1 0 0 e-" a2 (k, w)
a,, (k, w) 1 0 1 e-" 0 a2 (k, -w)
t -27rw 0 e-" 1 0 t

a, (- k, w) VI -_e
-7rW 0

a2 (- k, w) ajj
(- k,

w))  at(-k, -w))
t -

e 0 1
2

(3-16)
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They obey
t t 62[aj (k, w), a, (V, w')] = [aii (k, w), a,, (V, w)] = J(w - w')

[ai, aii] = [ai, at,] = 0. (3-17)

Thus we observe that the corresponding Hilbert space is separable into two factor

spaces: W = W, 0 ?Jjj- The space WI is described by the Hamiltonian H, andR

Wjj is described by the Hamiltonian -HRII*
The Rindler- or Boulware vacuum state 10, 0) is defined by

ajI0,O) = aiII0,O) = 0. (3-18)

This is not the same as the vacuum experienced by a freely falling observer, who
is said to experience the Minkowski- or Hawking vacuum If?), which obeys

a2(k,W)IS?) = 0- (3-19)

It is not difficult to express this state in terms of the basis generated by ai and

aii:

aj(k,w)IS?) = e`at (3.20)
ajj(k,w)IQ) = e-"ajt(-k,w)IJ?),

so that

00

-7rnwIQ) e-2- 1] In)Iln),Ie (3.21)
n=O

where the square root is added for normalization.

Notice that

HR 112) = (HI - HII) I Q) = 0, (3.22)R R

which confirms that I f2) is Lorentz invariant; remember that HR is the generator
of Lorentz boosts.

If one does not have the means to observe any features at p < 0 this implies
that one only has at one's disposal operators 0 composed of the fields in region
I, that is, the operators a, and at. These act only in the factor space W, but

are proportional to the identity operator in Wjj:

= 10ii (0101) (3.23)

Let us limit ourselves momentarily to a single point (k, w). There the expectation
value for such an operator in the state I S?) is

e-2 7rLa)E ,(nil I(n,101%)j In2)IIe -7no(ni + n2)

ni,n2

-27rnw e-27rw Tr (0 LO (3.24)I(nIOIn)Ie
n>O
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where o,, is the density matrix Ce-,3H, corresponding to a thermal state at the

temperature6 T = 1/27r. Note that in Rindler space time, energy and tempera-
ture are dimensionless. If we scale with the appropriate factor 4M as in Eq. (2-9)
we find the Hawking temperature,

TH - 1/87rM = 1/87rGMBH' (3.25)

This result is highly independent of the way the black hole was formed. In

case the collapse took place in a less symmetric way, or at various steps and

intervals, one still finds that an observer falling in the black hole should observe

the Hawking vacuum state there, and this necessarily leads to the density matrix

g,,. In particular, one could assume that the collapsing matter was in a pure

quantum state, and even in that case, the outgoing radiation appears to be

mixed according to the matrix p.. The question to be asked is how literally this

result is to be taken. One could conclude

i) that black holes must be fundamentally different from other objects in na-

ture. They do not obey a single Schr6dinger equation (which after all would

allow pure states to evolve only into pure states), but instead obey proba-
bilistic equations of motion that are not purely quantum mechanical2.

According to this view, a more basic theory at the Planck scale would show

no quantum mechanical features of the familiar kind. Alternatively, perhaps,

it) black holes do obey a Schr6dinger equation, but this equation requires knowl-

edge of all inaccessible observables behind the horizon, so that a black hole

forms an infinitely degenerate state. In this case the black hole can never de-

cay completelY7, but it decays into stable, infinitely degenerate, final states

with masses of the order of the Planck mass, called remnants. Thirdly, how-

ever, one may suspect that

iii) the density matrix derivation depended on certain hidden assumptions of

a statistical nature, such that the answer may be correct in a statistical

sense, but more precise treatments may yield a purely quantum mechanical

description of a black hole that nevertheless has only a finite degeneracy.
This is the scattering matrix assumption, which we will further investigate
from section 7 onwards.

Thus, one expects the system as a whole to react just as any other phys-
ical system does: when it absorbs infalling material, or even just infalling
radiation, it should react some way or other, and enter into a state that is

orthogonal to what it would have evolved into if the infalling material had

been in a different mode or totally absent. This is just the experimentally
observed fact that all known evolution laws in small-scale physics can be

writte- In terms of a unitary evolution matrix. It is hard to understand how

the world at the scale of ordinary atomic and elementary particle physics
could behave quantum mechanically and evolve in a unitary way, if quan-
tum mechanics were not at the basis of the laws of dynamics at the smallest

distance scales.
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It appears that the derivation of the density matrixo, in Eq. (3.24) cannot be

exactly right, since it implies that infalling material of whatever variety should

not affect the outgoing radiation at all (linearized quantum field theory was

used). This would violate unitarity.
The density matrix o, has to be replaced by a pure state.

4 Black Hole Entropy, and its Interpretation in Terms of

Quantum States

The fact that the radiation emitted, as described by Eq. (3.25), is thermal, opens

up the possibility to approach this phenomenon from a thermodynamical point
of view. TaXing MBH to be the energy and T = TH the temperature, one readily
derives the entropy S:

TdS = dmBH; dS = 87rGMBHdMBH; S = 47rGm2BH + C, (4.1)

where C is an unknown integration constant, to be referred to as the "entropy
normalization constant".

It is important to note that the expression obtained for the entropy S, apart
from the integration constant, is always equal to IAIG, where A is the area of

4

the horizon, a finding that will be very much at the center of our discussions.

Connecting the entropy to the density of quantum mechanical states8, must

be done with considerable care, since there will be two kinds of divergences: at

the horizon and at spacelike infinity. In fact, one may very well question the

mere existence of such quantum levels. This, however, is the key assumption of

this paper: not only is the quantum mechanics of black holes meaningful, it can

also be derived, and the constant C in Eq. (4.1) is finite and of order one (apart
from subdominant terms). In order to enable us to judge the relation between

the entropy just derived, and the density of quantum states, we now present
a direct argument concerning the density of states, an argument that will also

show that any infinities at the horizon must be absorbed in C, but the "infrared"
infinities arising from spacelike infinity should be excluded; the latter represent
the radiation field far from the black hole.

The spectral density of a black hole can be derived from its Hawking temper-
ature by applying time reversal invariance9. We have to our disposal both the

emission rate (the Hawking radiation intensity), and the capture probability, or

the effective cross section of the black hole for infalling matter.

The cross section o- is approximately determined by the radius r+ of the

horizon:

o- - 27rr2 = 87rM2, (4.2)

and slightly more for objects moving in slowly. The emission probability Wdt
for a given particle type, in a given quantum state, in a large volume V = L' is:

Wdt -

a(k)v e-ElTdt, (4-3)
V



21. Quantum Information on the Black Hole Horizon 459

where k is the wave number characterizing the quantum state, v is the particle
velocity, and E is its momentum.

Now we assume that the process is also governed by a Schr6dinger equation.
This means that there exist quantum mechanical transition amplitudes,

7-in= BH(M + GEJ I*BH JE) in I

and Tout = BH(M i ut(El IM + GE)BH 1 (4.4)

where the states IM)BH represent black hole states with mass MIG, and the

other states are energy eigenstates of particles in the volume V. In terms of

these amplitudes, using the so-called Fermi Golden Rule, the cross section and

the emission probabilities can be written as

0- - ITin 120(M + GE)lv, (4-5)

- t12 0(M)
1

(4-6)W IT. - V

where Lo(M) stands for the level density of a black hole with mass M. The factor

v-1 in Eq. (4.5) is a kinematical factor, and the factor V-1 in W arises from the

normalization of the wave function.

Now, time reversal invariance relates 77i'n to Tout (through complex conju-
gation). To be precise, all one needs is PCT invariance, since the parity trans-

formation P and charge conjugation C have no effect on our calculation of a.

Dividing the expressions (4.5) and (4.6), and using (4-3), one finds:

Lo(M + GE)
- eEIT = .87rME (4.7)

O(M)L

(naturally, we assume the energy E to be small compared to the black hole mass

M, so that the E2 terms are relatively insignificant). This is easy to integrate:

p(M) = e47rM2 IG + C = eS. (4-8)

For large enough black holes, Eq. (4.8) may be rewritten as

A/Ao
Lo(M) = 2 (4.9)

where A is the horizon area and AO is a fundamental unit of area,

AO - 4G In 2. (4.10)

This suggests a spin-like degree of freedom on all surface elements of size Ao.
As stated earlier, the importance of this derivation is the fact that the expres-

sions used as starting points are the actual Hawking emission rate and the actual

black hole absorption cross section. This implies that, if in more detailed con-

siderations divergences are found near the horizon, these divergences should not

be used as arguments to adjust the relation between entropy and level density
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by large renormalization factors. Furthermore, the Golden Rule argument can

be used only to deal with one emitted particle at the time. Hence, we should not

take the outside volume V so large that the dominant emission mode contains

very many particles. Therefore, any divergences found when the outside volume

is taken to infinity should be subtracted.

Extension to the more general Kerr-Newman solutions is straightforward.

5 The Brick Wall Model'

In this Section, we now present a model in which only low energy quantum
fluctuations of the fields are taken into account. We apply quantum field theory
up to some point r, close to the horizon: r, = r+ + h, h > 0. For simplicity we
only consider scalar fields -Pi (r, 0, 0, t), whose only interaction is the gravitational
one with the metric; generalization towards spinor, vector or even perturbative
gravitational field excitations will be straightforward. To simplify things, we just
represent all those by giving the fields 4ii a multiplicity N, so i = 1 N. At

r = r, we impose a boundary condition:

 Pi (r, 0, 0, t) = 0 if r < r, . (5.1)

The quanta of the fields will be given a temperature T = T
H*

The question one

may ask is: which value should one assign to the cutoff parameter h, such that

the entropy of this system precisely takes the value (4-1), so that the density
of quantum states corresponds to (4.8)? We will need an infrared cutoff in the

form of a box with radius L:

(ti (r, 0, 0, t) = 0 if r > L. (5.2)

To determine the thermodynamic properties of this system, one must com-

pute the energy levels E(n,fJ3) of the bosons 4ii. The Lagrange density C in

the metric (2-1) is given by

2M) -1

pt4i,)2 2M) pr4i,)2 -2 22L (x, t) = 1 - I - - r
-

- M .P 
r r

Z % *

(5-3)

In the approximation

m , < 2M/02 h, L > 2M, (5.4)

the main contributions to free energy at a temperature T = 3-1 is found to

be9, 5

27r3N 2M) 4 2
_ M2)3/2

F ;z: - -

2
L3N dE(E (5-5)

45h ( 3 97r OE - 1
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The second part is the usual contribution from the vacuum surrounding the

black hole at great distances, and as argued before, should be discarded. The

first part is an intrinsic contribution from the horizon, and it is seen to diverge
linearly as h  0.

The contribution of the horizon to the total energy U and the entropy S are

a 27r3 2M 4

U - (3F = - N, (5.6)
a,3 15h ( 0 )

S = 13(U-F) =

87r32M (2M) 3

N
. (5.7)

45h 13

When this is adjusted to the Hawking value, Eq. (4.1), with 3 = 11TH
87rM, we find that the cutoff parameter h must be chosen to be

h
NG

7207rM
0

The total energy U of the thermally excited particles is given by

G U =  M, (5-9)8

independently of N. Alternatively, one could have tuned the energy U to be equal
to M

BH1
which would yield the same order of magnitude for h, but adjusting the

physical degrees of freedom, i.e., the entropy S, appears to us more sensible.

Clearly, it makes little sense to allow h-40, since then both the entropy and the

energy would diverge.
We refer to the cutoff near the horizon as a "brick wall". The physical distance

between the brick wall and the horizon is

2M+h dr [N-G
2M

ds = f2
M V-1 --2M/r

- 2V2Mh V 907r
(5.10)

which is independent of the mass m
BH

of the black hole. The brick wall should
be a property of any horizon of arbitrary size. If N is not too large, the brick
wall thickness is of the order of the Planck length.

The brick wall model, with the values of 3 and h fixed according to Equa-
tions (3.25) and (4.1), actually reproduces the thermodynamic properties of a

black hole quite nicely, and could have served as a realistic model for a black hole
that fully obeys Schr6dinger's equation and preserves quantum coherence, ex-

cept for the fact that it also preserves all symmetries of the underlying quantum
field theory; it could generate chemical potentials for the various globally con-

served quantum numbers. Thus, not only the temperature must be constrained
to keep the Hawking value, but also the chemical potentials are constrained to

be zero. In principle, this is easy to realize, simply by introducing symmetry
breaking effects in the brick wall boundary condition, but probably one would
then be pushing this model too far; anyway, its most important deficiency is
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that we completely gave up invariance under general coordinate transformations

near the horizon.

The most important lesson to be learned from the brick wall model is that

Hawking radiation can indeed be seen to be compatible with quantum mechan-

ical Purity, if only one could introduce a cutoff at the Planck scale.

6 The Aichelburg-Sexl Metric near a Black Hole

The gravitational effect of an infalling particle in the Schwarzschild metric can

be understood when we transform to a locally flat space-time, Eqs. (2.6). Con-
sider the coordinate frames of Section 2. As Schwarzschild time t, or equivalently,
Rindler time -r, evolves, the infalling particle is Lorentz boosted, as we see in

Eq. (2.8). In terms of the flat coordinates, therefore, the energy of the particles
increases exponentially, and thus it quickly reaches values where gravitational
effects can no longer be ignored. These effects are easy to calculate in the ap-

proximation that the source particle moves with the speed of light'O, 11.
For simplicity, consider the case that the surrounding space-time is com-

pletely flat. In the rest frame we can approximate the metric as

ds2 dX2 + 2P dt2 +  -11 dr2 (6-1)
r r

r _=  x2, + x22 + x
2 dX2 dt2 + dr2 + r2dj?2

where I.L = Gm, and m is the mass of the source particle. This we rewrite as

2112 2 )2 2 j2 + (U . X)2ds = dx + (u - dx + LAdr r  ,Fx2 + (u x)2, (6.2)
r r

where

U = (0, 0, 0, i) U2 _1 (6-3)

In these expressions, we have neglected all effects that are of higher order in

the particle mass /_t, since we choose 1,t to be small. The particle's Schwarzschild
radius r+ is very small, and the Lorentz boost to be considered next will only
further reduce the particle's dimensions.

The advantage of the notation chosen in Eq. (6.2) is of course that now the

Lorentz boost is straightforward. In the boosted frame we can take

M UP = , (0, 0, P, ip) = P" , Gp -

I.LV
> A - (6.4)

,/I- -_V2/C2

In the limit tt == 0, p fixed, one has r =: Ix - ul. It will turn out to be useful

to compare the metric then obtained with the flat space-time metric in two

coordinate frames yA), defined as

14
= x" 2p u" log r. (6-5)Y()
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We have:

dy2 dx2 4p
(u - dx) dr - 4t,2

dr2

(6.6)
r r2

2 Y2 2/-t
(U . X)] 2 /12 )2 .

ds - d d[r T- +4_ (dlogr (6.7)() -

r

Now consider the limit (6.4). We keep p fixed but let /,t tend to zero. We now

claim that when (p - x) > 0, the metric ds2 approaches the flat metric dy2

W
whereas when (p - x) < 0, we have ds2 =:  dy2_) ,

and at the plane defined by
(p - x) = 0 these two flat space-times are glued together according to

A Y14 + 4/.z ul' log jJr'j (6-8)Y(+)
=

(-)

where j = (X, Y, 0, 0), the transverse part of the coordinates yp.
Verifying the flatness of space-time away from the plane (p - x) = 0, is easy,

but to ascertain the connection formula (6.8), is a bit more delicate. One can

show5 that

ds2
-4 dY2 ) if (P - X)   0, (6.9A)

ds2
-* dY2 if (P - X) ; 0, (6.9B)

Y(+) = y(-) + 4/-t 0 log r in the region (p - x)   0 (6.9C)

which is equivalent to Eq. (6-8). This defines the Aichelburg-Sexl metriclo.
The effect a fast moving particle has on the surrounding space-time, is vi-

sualized in Fig. 3. In terms of light cone coordinates, we have the connection

formula

X+ (+) - X+ 4Gp+ log I:i I = 4v _2 Gp log jJr- I
X_ (+) - X_ 0

- (6-10)

Here, , is the transverse distance from the source particle, which is moving
(highly relativistically) along the line x- = : = 0. The r.h.s. of Eq. (6.10) is a

Green function, -vF2f (.,7v-)p, satisfying the equation

2 f (j ) 62(,= -87rG  ) , (6-11)

where the sign is chosen such that f is large for small values of

This result can be generalized to the case of a particle moving into a finite size
black hole. More details can be found in refs" , 5. For most purposes, however, it

is sufficient to look at Rindler space, which corresponds to an infinite size black
hole. There, the fast particle produces the Aichelburg-Sexl metric as described
above.
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Fig. 3 Snapshot of the gravitational shock wave caused by a highly relativistic particle.
If we have a rectangular grid and synchronized clocks before the particle passed by
(region A), then, behind the particle (region B), the grid will be deformed, and the

clocks desynchronized. The shift is proportional to the logarithm of the transverse

distance.

7 Constructing the S-Matrix from the Gravitational

Back Reaction

The postulate that scattering of particles against a black hole can be described by
a quantum mechanical scattering matrix is an assumption that cannot be proved
from the principles of quantum field theory and general relativity alone. Indeed,
it may well be at variance with these theories, if the latter would be extrapolated
to beyond the Planck scale. The S-matrix Ansatz applied here may be seen as

a new physical principle, perhaps comparable to Max Planck's new postulate
in his 1900 paper, that energies are quantized. The S-matrix Ansatz reads as

folloWS12:

All physical interaction processes that begin and end with free, stable

particles moving far apart in an asymptotically flat space-time, therefore
also all those that involve the creation and subsequent evaporation of
a black hole, can be described by one scattering matrix S relating the

asymptotic outgoing states lout) to the ingoing states lin).

In essence, the Ansatz will be used in the following way13, 12: consider one state

lino) and one state louto), with a possible black hole in their connecting history.
We assume some value for the transition amplitude (outolino) = M. This means

that we replaced the out-state produced by the Hartle-Hawking!vacuum, which

actually was a quantum mechanical mixture of states, by one arbitrary choice
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Jouto). Then, using all the physical laws that we know and trust, we compute
neighboring S-matrix elements, (outo + 6outlino + 6in) *

If there were no interactions, the effects from 6
in

onto the out-states would

not have been discernable. All amplitudes would have to be equal, and the

scattering matrix thus obtained could never be unitary. Since in the calculations
of Section 5, interactions between the 4i particles were ignored, those calculations

were not good enough to give us our S-matrix. In this section, we will take only
one type of interaction into account: the gravitational shift computed in the

previous section. Thus, we only consider particles moving in and out in the

longitudinal direction, with hyper-relativistic speeds when they are near the
horizon. Far away from the horizon, as soon as r - 2M = 0(2M), they will be
allowed to go slower, indeed, out-moving particles may turn around to fall back
in again. What has to be done in order to accommodate for such possibilities, is

to define the S-matrix to consist of three ingredients:

S = sout ShorSin 1 (7.1)

where S
in

relates the asymptotic in-states to wave packets moving inwards

very near the horizon, S.ut connects wave packets moving outwards very near

the horizon to the asymptotic out-states, and S
hor

is the really important part
telling us how particles moving inwards very near the horizon affect the outgoing
particles very near the horizon. S

in
and S..t follow unambiguously from known

laws of low-energy physics, and require little discussion.
In the limit M -4 oo, the region near the horizon can be described as a Rindler

space. The angles 0 and 0 are replaced by flat transverse coordinates, and we

rescale the momentum p accordingly. We recover the shift (6.10), determined by
the Green function f of Eq. (6.11).

To begin our construction of the S-matrix, let us take J
in

to be one extra

particle going in with momentum 6pi-n, at the transverse position V. Since we

use the conventions of Section 4, the value of Jpi-n is negative. The outgoing
particles, at points , near to the point V, are shifted inwards, so that 6xout is

negative, and

XOut -4 XOut + 6X 6Pin (7.2)out P ) 6xout f

where f obeys Eq. (6. 11), or, if from now on 87rG 1,

62 f p ) =: _ 62 (', ) . (7-3)

We now temporarily suppress the superscripts since the subscripts in and
out suffice, and later we want to reintroduce J:: } with different sign conventions.

Any outgoing particle has a wave packet V), oscillating as e'P-utx-ut. With the
shift 6x this wave turns into

out)

- ZP0
2  CezPOutxOut ut6xOut

= e- i f d
. [JX.Ut (.10 -pout 0 )10

, (7.4)
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where Pout (J ) is the operator that generates a shift at transverse position i . It is

also the total momentum density of the outgoing particles at transverse position

Now combining this with Eq. (7.2), we see that

0 =* 0' = e
- i f d2 i [JPin f (JV_ - -V) -Pout GO (7-5)

Repeating this many times, adding (or removing) different ingoing particles in

the in-state, with momenta adding all up to Pin (.V) at the transverse position
V, we see that the total effect is:

2 2 i /e-if d j d [Pin(V)f(i -,V)1out(5 )] (7-6)

Notice the complete symmetry between in- and outgoing particles. Pin (V) refers

to all momenta of particles going in during a certain epoch where we have control

over the ingoing particles. Pout (J ) refers to all particles seen going out during a

similar epoch of observations. Before or after these two epochs we do not have

the opportunity to observe or control. The states there are kept fixed as much

as is possible. Of course, both Pin and Pout are operators; from now on we omit

the hat 0.
Noting that, according to the result of Section 4, the total number of quantum

states should be finite, we have reasons to believe that, by adding or subtracting
a sufficient number of particles, we can generate all in-states from lino), and

for the out-states it is even more natural to have Put (., ) refer to all outgoing
particles. It is suggested to describe the in- and out states exclusively by giving
the functions Pin (Jr-) and Pout One then obtains

(1Pout(X':")111PinG;0D = A(exp[-i f d2xi d2 X"" Pin GV) f V)Pout 001 , (7-7)

where M is a common normalization factor. The magnitude of this factor is fixed

by requiring S to be unitary; its phase cannot be determined, but in most cases

it will be a freely adjustable parameter anyway, since our amplitude tends to

violate global conservation laws.

This scattering matrix is indeed unitary, if one imposes the inner product

(fPin GO I I IPin 1(:0 1) JV' 6 (Pin P ) - Pin'(;O) (7-8)

for the in-states, with again some normalization parameter JV', and we impose
a similar inner product rule for the out-states.

We should hasten to add, that the S-matrix (7.7) cannot be the ultimate

result of our theory, since the states JJPi. with the inner product (7.8)
t

form a continuum of states, and this is nXthe result we want. What this really
means is that we still expect some cut-off mechanism when 15 - V1 approaches
the Planck length. Indeed, if lj - V1 approaches the Planck length, our present
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result is invalid, since then the transverse components of the momenta also pro-
duce shifts, and those have not been taken into account. If, however, we limit

ourselves to a "coarse grained" description, specifying only features that are

large compared to the Planck length, and if it could indeed be accepted that

restricting oneself to the gravitational interaction forces only (and of those only
the longitudinal ones), is reasonable, then (7.7) seems to be a reasonable ap-

proximation to the S-matrix that we are looking for. In view of this, let us first
further analyze what this S-matrix implies.

8 Functional Operator Algebra on the Horizon

Consider the Hilbert space of in-states If Pin (i ) 1) with inner product (7.8), and
J,define an operator UinGO that is canonically conjugated to Pin Gv):

[Pin 0 ), Uin GV)] _i62(i _ i /),
[PinGO, PinGV)] WinGO, UinGV)] := 0 (8.2)

(We regard all these operators as acting on in-states). The eigenstates Of Uin G
are the functional Fourier transforms of the eigenstates I fPin GO 1) of the opera-
tors Pin:

WinGOD 7--- JViff DPine-i f & Pin (X0 Uin GO I f Pin (8-3)

where AP' is again a normalization factor.

Writing this as

(1UinGMIfPinG'0D fitei f dj Pin GO Uin Gfl (8.4)

we find that the states I f Uin GO 1) can be expressed in terms of the states I Put (fl 1),
by using Equ. (7.7).

We find:

Uin(V) f dJr' f (j - V)Put (8-5)

and similarly:

U..t (v) f dj f (j - V)Pin GO (8-6)

where U,,,,t is the operator canonically conjugated to P,,ut, since in addition to

Eqs. (8.1) and (8.2) we have for the out-states:

out (j ), Uoutp /)] _&p _ il) (8-7)[P
[Po.t(j ), Pout(V)] [Uo-t(fl, Uo.t(-V)] = 0 (8-8)
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By virtue of the fact that Eqs (8.5) and (8.6) relate operators on in-states to

operators on out-states, we say that these generate the S-matrix. Rewriting the

equations as

62U out (j ) 62U ut(i ) = _pin P ) = R
0 'inM (8.9)

underlines the local nature of these equations with respect to the transverse

coordinates  c. Also:

U ') } I I Uin M... exp i d2j 6U ut (8-10)out (JV f 0 kin (J )] -

Because of its local nature, this equation may be suspected to be more elemen-

tary than Eq. (7.7), which was derived earlier. Combining (8.10) with (8.4) and

the analogous inner product between the U,,,,t and Pout eigenstates, we rewrite

Eq. (7.7) as

(1pout (-i) I I 1pin (-' ) 1) = JV f 'Duin (- ) f Duout (8-11)

2,;- ') Uin Pexp [ i f d I - kout kin (-' ) + Pin (JV out (- )Uout G"r) 1] 1

where M is again a different but universal normalization factor (henceforth, we

write such factors simply as M.)
Imagine now that both the in- and the out-state can be completely composed

of a finite number, N = Nin + Nout, of particles. Let us denote the momenta of
the ingoing particles as

- i = 17 ... 7 Nin, entering at transverse coordinatesP "in I

and those of the outgoing particles, at transverse coordinates V, as --P+,j
out

= Nin + 1, . . . ,
N. The reason for the minus sign here, is that now the total

momentum going into the horizon can be seen as the sum of all 4-vectors p4 of
the in- and outgoing particles, as it is usually done in field theory. The operators
U i. are put in a Lorentz vector x4 without sign changes:

out

X+ =-- Uin i
X- = Uut - (8-12)

Substituting

Nj,j N

out p ) P+J 62 p;PPin (-i in out
i j) (8-13)

j=Ni,,+l

one obtains

(outlin) = Mf Dx
+ f Dx

- (8-14)

N

2, 5X,4 (.exp [i f d
2

5X,4 p )I + i Pji,iX,4 (j i)]
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Here, the transverse components of x4 are not functionally integrated over; they
are the transverse coordinates. The factor .1 compensates for double counting.2

The contribution of the transverse components of xA to the integrand must be

subtracted, which corresponds to a renormalization of M.
It is, however, more realistic to put the external particles in wave functions

that are eigenstates of momenta only. Therefore, we must convolute this expres-
i.;ip  I

sion by transverse wave functions e
,
where the transverse components of

the momenta, P', must be kept small compared to the Planck energy (otherwise,
it would have been illegal to ignore the transverse gravitational shifts.) We then

obtain

2: i ) f DX+ (i ) f DX- (j )(out I in) M f d

N

exp [ i d2j -16e 6xt, + i pt"ie (8-15)f 2

where now the effects of the wave functions are included in the contributions

of the external momenta P",' to the 'vertex insertions'. Thus, in contrast to

Eq. (8.14), pl',' here have transverse components.
It is here that the striking resemblence to string amplitudes should be pointed

out. We have the string integrand (for closed strings), as well as the integration
over moduli space, which here is formed by the points P where the particles cross

the horizon. The fact that the action is linearized is understandable, since all

transverse dimensions have been kept large compared to the longitudinal ones.

What is more surprising is the value of the string constant: it is equal to i, in

units where 87rG = 1.

The way in which here the black hole horizon is identified with a string
worldsheet is sketched in Fig. 4. At t - -oo we have ingoing closed "strings".
Arriving at the horizon these strings exchange a string, whose world sheet wraps
around the horizon exactly once. The edges of the holes left behind are the

outgoing closed strings.
At this point, let us once again focus on the nature of the Hilbert space of in-

and outgoing particles. Suppose that, for simplicity, we discretize the transverse

coordinates j . The functional integrals then become finite-dimensional. What

distinguishes this space from the usual Fock space is now, that at every point
;- exactly one "particle" is allowed. The only way to mimick the usual Fockx

space is to assume that every elementary point particle must be given a different
value for its transverse coordinate , . This constraint may be considered to be

negligible, if the J are sufficiently fine-grained, but it is somewhat puzzling how to

maintain this constraint in an infinite-volume limit. Apparently, unlike ordinary
Fock space, a state with two or more particles at the same transverse position

with momenta p",1, . P,4,k, is indistinguishable from the state with just a

single particle there, whose momentum is Ek 1 pl','. This may seem to be odd,i=

but it should be noted that this situation is identical to what one has in string
theory, where the integrand for a many-particle amplitude is identical to the
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Fig. 4 The horizon as a string world sheet. Three snapshots of a collision event with a

black hole intermediate state.

amplitude for fewer particles, when two or more of the vertex insertions happen
to coincide in the string world sheet.

The operators x4(i ) may be regarded as an "average position" operator
for all particles ever entering or leaving the horizon at that point. This may

(partly) explain why this information never "disappears" behind the horizon:
there are always sufficient numbers of particles to be seen outside. This is in fact

guaranteed by our brick wall model: the number of particles at distance greater
than h from the horizon are sufficient to represent all "information" concerning
the state of the black hole.

There is a special interpretation for the commutation rule

2, Ilfp - V')[Pin(V'), Uin(-' I -ifP - -V)[UoutGO, UinGV)] f d

(8-16)

We could decide to interpret -Uout(., ) as indicating the position of the horizon
with respect to the particles seen to emerge from the black hole, and similarly,
- Uin (., ) as the time reverse of this: the position of the past horizon with respect
to the ingoing particles. Eq. (8-16) implies an uncertainty relation for these two

quantities. For ordinary black holes, Uout(j ) is usually precisely defined, as it is

determined by the momentum distribution of the ingoing particles that actually
formed the black hole. Uin GO is the horizon of the time-reversed, or "white hole".

In our picture, the white hole is the object formed by the Hawking particles if

we follow these backwards in time. This is usually spread quantum mechanically
over a large range of values. In our view, white holes are nothing but quantum
superpositions of black holes. They relate to black holes just like the momentum

and the position of a quantum particle are related to each other.
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9 The Transverse Gravitational Force; A Discrete

Spectrum of States12

So-far, the transversal component of the gravitational force has not been taken

into account. One may suspect that this is the reason why our algebra is still

represented by a continuum of states.

Unfortunately, as we will show, including the transverse gravitational force

is difficult. We here only give an indication as to how one could proceed along
these lines, so as to further improve our theory.

Let us recapitulate our algebra. From Section 8:

[PinGO, Pin(M] 0 [PoutGO, Pout(M] (9.1)
[Uin(:0, Uin(M] 0 Wout(fl, Uout(01 (9.2)

[P _ij2(., [pout U ut (9-3)in GO, UinM1 0

Pout (j ) = 62 UinGO PinGO - _62Uout (9.4)
AnGfl, Uout(01 = if G' - M [Pin GO, PoutMI = _i6 2j2 (j (9-5)

As our starting point we again use Eqs. (9.1) - (9-5), but assume these to be
valid only when the functions Uin(fl and Uout(fl are slowly varying. For later

convenience, we rename the transverse coordinates on the horizon as (0- 1 ,012),
and now define a 2-surface x '(&) embedded in 4-space:

X+ = Uin ,
X- = Uout ,

j = &
. (9-6)

The orientation of the surface is given by the tensor

_W-p(&) _
E.b

'9X4 0Xv
(9.7)

,90,a 0,,b

We have

,qj a
6a (9-8)00,b b

Now first consider the case that x are slowly varying. This implies

W12 = I ; W1 -

(9x
.

190,2 '

W2
ax

)2
(90,1

W+ 0(a,x (9-9)

Commutation rules follow from Eqs. (9.2) and (9.5):

[Wl+(&), W2-(&I)] = [W2+(&), Wl-(&I)] - iala2f

wl-(&')] =

192
-f(& (9-10),90,22

[W2+(&), W2-(&I)]
tq 2

5-U12 f
U12
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As a special case, we have

[W"+(&), W11-W)l = _ia 2A& - &1) = i j2 (9.11)

where the index /-t is summed over. It is this equation that we can reformulate

in a manifestly Lorentz covariant form. One then may hope that not only the

longitudinal, but also the shifts in all other directions will have been accommo-

dated for. Since according to Eq. (9.9), W12 is the dominating component of the

tensor WA', one may rewrite the right hand side of Eq. (9.11) as

+-12 62 -tLvW6 W12 AV (&)62 (9-12)2

with E+-12 = i63412 = i. The covariant generalization is then:

[Wpcx(&), WjA0(&1)] = jj2(& _ &1),Fa0 4vWjiv(&) (9.13)2

This equation, as well as (9.11), is invariant under all continuous reparametri-
zations of the & coordinates (note that W"v, as defined by Eq. (9-7), transforms

as a density.)
It is tempting to assume Eq. (9.13) to have a wider range of validity than the

non-covariant Eqs. (9.1) - (9.10). After all, Lorentz invariance guarantees that

Eq. (9.13) continues to hold when the derivatives of x1 (j ) are arbitrarily large.
Unfortunately, the equations (9. 11) do not form a closed algebra, since at the

left hand side the index M is still summed over. One can, however, limit oneself

to the self-dual part:

K"v = iff'" + 161"AW"), (9.14)2

which has only three independent components:

K, = i(W23 + W14) ; K2 = i(W31 + W24) ; K3 = i(W12 + w34)
(9-15)

and, indeed, their algebra closes. From Eq. (9.14) we derive:

[K,,(&), KbW)j = i6ab,K, (&) j2 (& - &1). (9-16)

The operators Ka(&) are distributions. In order to construct representations
of the algebra (9.16), we introduce test functions f (&), g(&), and write

def 2&'LM Ka (&) f (&)d (9-17)
a f

L(f), L(9)] = iEab,L(f9). (9-18)
a b C

Restricting oneself to test functions f with f2 = f, which only take the values 0

or 1, we find that the operators L(f) obey the commutation rules of the angulara

momenta:
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[L(f), L(f)] :-::::: i6ab,L(f). (9-19)
a b C

Notice that, since these operators La are obtained by integrating Ka over the

region(s) where f = 1, and because the definition of Ka can be traced back to

Eq. (9-7), one can rewrite L(f) as a contour integral:a

Ll(f) = i i (X2dX3 + x'dX4), etc.
, (9.20)

bf

where Jf stands for the boundary of the support of f

Fig. 5 Domains on the horizon corresponding to a representation of the algebra (9.16).

Suppose now that we have a set of test functions f which are equal to 1

on domains A or B, etc., and zero elsewhere. The domains form a lattice (of
our choice) on the horizon, see Fig. 5. In each domain we have a set of three

operators La that commute as angular momentum operators. The states could

be formed out of the It, m) eigenstates of L2 and L3 -
If we combine domains to

form some larger domain, the corresponding angular momentum operators must

be added to form the new L operators, by the use of Clebsh-Gordan coefficients.

Actually, if any of the t values is larger than the minimal value 1 (or perhaps, in
2

some cases, 1), one can imagine splitting the corresponding domain into smaller

ones with each the t value .1. Thus, one may end up with a lattice where on each
2

site one has m It would not make much sense to maintain domains which
2

have L = 0, because the vanishing of the integrals (9.20) would imply that these

regions have no spatial extent.

At first sight, this looks like a complete resolution of our problems. If each

domain could be attributed an area equal to 4G In 2 (see Eq. (4. 10)), we exactly
reproduce Eq. (4.9) for the level density. Unfortunately, life is not so simple. In

Eq. (9.15), WA = iW'O are antihermitean operators, but W12, W23 and W31 are

hermitean. Therefore, the hermitean conjugates of K, and those of L, are the

antiself-dual parts of W"'. The La operators are not hermitean, and therefore

the t and m quantum numbers need not be subjected to the usual constraints

of being half-integer, nor to obey the usual inequalities Iml < t.
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10 Black Hole Complementarity

Let us return to the argument at the end of Section 9 concerning the notion of

causality14. It has often been raised as a point of criticism against our scattering
matrix Ansatz, see Fig. 6. An observer A passes through an horizon, while also an

onserver B detects Hawking radiation. If we were allowed to treat them as living
in a space-time that is fixed by external conditions, these two observers could be

considered to be spacelike separated, and therefore one could conclude that their

measurement operators commute. Hilbert space can be factored into a space of

states whose properties can be detected by A, and another space of states whose

properties can be detected by B, and possible further factors that can be seen

neither by A nor by B. If, however, this space were considered to be the horizon

of a black hole, one would expect the states seen by A to be related to the states

seen by B through an S-matrix, and hence no longer independent. For the black

hole physicist, there is no contradiction. Any measurement made by B, implies
the introduction of states obtained from the Hartle-Hawking!vacuum by acting
on it with operators that create or remove particles seen by B, which for A would

by outrageously energetic. These particles would cause gravitational shifts that

seriously affect the ingoing objects, including the fragile detectors used by A.

Thus, these observations cannot be independent. What is new here, even for any

possible flat space-time observer, is that trans-Planckian particles are involved

(with this term we mean particles whose energies are far beyond the Planck

value). In short: the metric is not determined solely by external circumstances,
but also by the particles under consideration.

Complementarity here stands for the idea that states in Hilbert space near

a black hole will appear to be profoundly different when the ingoing observer

compares them with the outside one. General coordinate transformations fail

to relate the experiences of the Hawking observer to the ones of the ongoing
observer. Nevertheless, we talk about the same Hilbert space of states. In the
limit of the infinite size black hole, this implies that a mapping should exist

between the states living in a flat background metric, and black hole states that

have all their information mapped onto the horizon. Unfortunately, a completely
coherent physical picture clarifying this situation is still lacking.

Apparently, new phenomena strongly affect the conventional form of quan-
tum mechanical Hilbert space when trans-Planckian particles enter the scene.

With trans-Planckian particles around, spacelike separated operators may no

longer commute with each other.

11 Outlook

Even though the philosophy, adhered to in this paper, is completely straightfor-
ward, and should not present fundamental conceptual problems, it nevertheless

turned out to be extremely difficult to implement it completely. The effects of
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Fig. 6 The ingoing observer (A), and the Hawking observer (B).

transverse gravitational shifts were hard to implement, since these shifts do not

commute with the longitudinal ones (because of their j -dependence). We have

not mentioned another difficulty: the mass shell conditions for the in- and outgo-
ing particles. We took these to be essentially massless, but most particles have a

lower bound for their masses. Transverse momenta and masses, however, cause

outgoing particles to fall back in again. The difficulty connected to this is the

fact that, close to the horizon, ingoing and outgoing states will be difficult to dis-

tinguish. Presumably, the splitting of S according to S = SoutShorSin (Eq. 7. 1),
must be further refined.

The resemblance to string theory in our final results may suggest that one

should readdress the black hole using string theory. Some caution however is

called for. It is well-known that string theory requires a 10 or 26 dimensional

target space, if tachyons and other unphysical features are to be avoided, but

such arguments do not directly apply to our present aproach: unitarity and

causality look very different, as is manifest from the observation that our string
constant is purely imaginary. Secondly, by considering the "information content"

of the states in our Hilbert space, we infer that a cut-off at the Planck scale

is required that turns our world into a discrete one at that scale. This is quite
unlike the starting points of string theory. Convergence of the various approaches
may well be envisioned, but it is conceivable that two-dimensional conformal

quantum field theory is no more (or less) relevant here than it is in certain

statistical models such as the Ising model. We should keep in mind that QCD is

also a theory that shows stringlike behavior, but clearly lives in four space-time
dimensions, so that apparently the formal unitarity arguments are not applicable
here.

The observation of black hole-white hole complementarity (Section 8) sug-

gests an interesting relationship between the black hole horizon and the white

hole singularity, and vice versa. After all, a white hole singularity would develop
as soon as one allows Hawking particles to produce a gravitational field, as one
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would be tempted to do when contemplating time reversal invariance. Indeed,
the point S in Fig. 2b, is not truly a point, but gets the extended shape of a

caustic when ingoing matter is deprived of its spherical symmetry. The opera-
tor U.,,,t(., ) could be regarded as the one describing this caustic. When ingoing
matter is allowed to enter during sufficiently large time intervals, this caustic

becomes a true fractal. At the same time, this fractal may be relavant for the

description of the singularity in the time-reversed black hole. A duality relation-

ship between the black hole singularity and the horizon has been proposed in

the framework of string theory.
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Panel Discussion: The Definitive Proofs of the Existence

of Black Holes

Werner Collmar (Garching), Norbert Straumann (Ziirich), Sandip K.

Chakrabarti (Calcutta), Gerard 't Hooft (Utrecht), Edward Seidel (Potsdam),
Werner Israel (Victoria)

It is our intention to give the non-expert reader a book at hand which enables

him or her to recognize whether there are black holes around or not. In the

various lectures of our school, the lecturers tried to address this question from
theoretical as well as from observational points of view. In the panel discussion

some of our lecturers were asked to sum up the present state of knowledge in the
form of relatively short statements. They were explicitely requested to answer

the fundamental question "Do black holes exist or not?". We hope that you will

enjoy the output of our panel as much as we did.

The Editors

Werner Collmar:

As an astrophysical observer I want to summarize briefly (my knowledge on)
the observational hints/evidence which we have for the existence of Black Holes

(BHs) in outer space.

The most conclusive observations would be if we could directly image the

astrophysical sites suspected to host a BH, like the center of active galaxies or of

galactic binaries, for example. Active galactic nuclei (AGNs) are believed to con-

tain massive BHs at their center. The Schwarzschild radius RS of a 10' Me BH
is 3x 108 km or -2 AU (astronomical units). If a surrounding accretion disk ex-

tends out to -500 RS, its angular size at a distance of 10 Mpc is -2 x 10-4 arcsec,
which is well below the angular resolution of the Hubble Space Telescope. Since
no resolved direct imaging is possible, the observational evidence has to come

from 'indirect' means.

In AGNs large luminosities are generated in small volumes, like the total

luminosity of our galaxy would be generated within our solar system, and would
be switched on and off on timescales of days. This extraordinary fact is not

explainable with nuclear fusion as the source of energy. However, it is most

naturally explained by the release of gravitational energy close to a massive BH,
which is the most efficient process we know.

The effects of the gravitational force of BHs on the surrounding stars or gas
can be studied. From velocity and velocity-dispersion measurements near the

center of galaxies, the enclosed mass can be estimated. The most promising cases

for BHs are found in our 'Milky Way' with -2.45 x 106 MO within 0.015 pc [2] and

F.W. Hehl, C. Kiefer, R.J.K. Metzler (Eds.): LNP 514, pp. 481 - 489, 1998
© Springer-Verlag Berlin Heidelberg 1998
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in NGC 4258 from VLBI (Very Long Baseline Interferometry maser observations

with a central mass of 3.6 x 107 ME) within a volume of 0.13 pc [8]. Massive star

clusters in such small volumes would not be stable for long times and therefore

have to collapse to BHs. X-ray observations have revealed an asymmetric and

redshifted iron K,, line in the Seyfert galaxy MCG-6-30-15 [10]. The shape and

the redshift are most easily explained if the line is generated in a plasma which

is located within the strong gravitational field close to a massive BE

If a BH is a member of a binary system, its mass can be estimated (via the

mass function) by the dynamics of the system. Several compact sources have

lower limits on their masses which are significantly larger than 3 MG, the upper
limit on the stability of a neutron star. The most promising stellar candidate to

date is the X-ray nova V404 Cyg with an estimated mass for the compact object
in the range between 10 and 15 Mo [9].

Different spectral signatures in compact binaries have been proposed to be

evidence for a BH as compact object instead of a neutron star, like spectral
bumps at 7-ray energies or power-law spectra up to -1 MeV instead of spectra
cutting off exponenti'ally at hard X-rays. Because these interpretations are model

dependent, their support for the evidence of BHs is less compelling than the mass

estimates, for example.

In the future new instruments from the radio to the 7-ray band will come

into operations with improved sensitivity and improved spectral and angular res-

olution. With these instruments we shall have better diagnostic tools to further

investigate such promising topics like this X-ray line in MCG-60-30-15, for ex-

ample. To my mind however, even these improved instruments will not provide a

'single key' observation definitely proving the existence of BHs. I rather believe

that - as time progresses - the overall evidence for BHs will rise asymptotically
to one.

Norbert Straumann:

The evidence of black holes in some X-ray binary systems and for supermas-
sive black holes in galactic centers is still indirect, but has become overwhelming
during the past few years. There is so far, however, very little evidence that these

collapsed objects are described by the Kerr metric.

In my brief remarks I would like to tell those of you, who had no closer look

at the observational situation, what I consider in both categories to be at present
the very best candidates. I will indicate only one prospect of observing specific
signatures associated with the Kerr metric. Others will have to say more on this.

Independent of the remarkable recent developments, I had never any serious

doubts that black holes exist in great numbers in the astronomical universe.

This is simply because 'cold' self-gravitating matter can only exist in a small

mass range below a few solar masses. There is, on the other hand, absolutely no
reason for all the many massive stars (or associations of stars) to get rid of their

mass in the course of their evolution in some violent processes (supernovae), in
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order to be able to settle down in a cold final state (white dwarf, neutron star,
quark star (?), ...).

The value of the largest possible mass, M,,,,,x, of a neutron star plays a de-

cisive role in the observational identification of stellar-mass black holes. In view

of the large uncertainties of the equation of state, it is important of having re-

liable limits Of Mmax. This is possible on the basis of general assumptions. For

instance, if one accepts a fluid dynamic description of matter in a neutron star,
causality implies that the velocity of sound should not exceed the velocity of

light. (It is true that the sound velocity is only a phase velocity, but it provides
the characteristics of the hydrodynamic equations for acceptable relativistic for-

mulations.) For non-rotating stars, an upper bound of about 3.2MD is obtained.

On the basis of even weaker assumptions (microscopic stability, dp/dp  ! 0) one

 

< 5MG instead. Rotating neutron stars can have somewhat largerfinds M,,,,,x
masses, see [6].

In binary X-ray systems the mass functions f can be measured with good
accuracy. Since this provides a rigorous lower limit for the mass of the compact
companion, the case for a black hole is extremely strong if f is bigger than 6MD,
say. Now, this is the case for the X-ray nova V404 Cygni, which has the mass

function

f = (6-08 0.06) Me

Other good cases have been mentioned in some of the lectures, but this is, as far

as I can see, the most secure stellar-mass black hole candidate we have at the

moment.

As far as supermassive black holes are concerned, I would like to emphasize
that gas-dynamical evidence is not very strong in general, because gas can easily
be pushed around. Therefore, the many examples of central gas and dust disks

perpendicular to jets, like M87, do not establish the existence of black holes.

Thanks to the recent work of Genzel and coworkers [2, 3, 7], we now know

that a dark mass of about 2.6 x 106M(D must reside within about a light week in

Sgr A*. Its density is thus greater than 2 x 1012M(D/pC3. There exist no stable

configurations of normal stars, stellar remnants of sub-stellar entities at that

density. This concentration of dark matter in the center of the Milky Way is

now the best case for a supermassive black hole.

Another, almost equally good case is provided by NGC 4258. The following
observations show that the central mass must be a black hole (or something even

more exotic). The peculiar spiral galaxy NGC 4258 (distance - 6.5 Mpc) has in

its core a disk extending from about 0.2 to 0.13 pc in radius. This was discovered

with a very precise mapping of gas motions via the 1.3 cm maser-emission of

H20 with VLBI (Very Long Baseline Interferometry). The angular resolution of

the array was better than 0.5 milliarc seconds. (This is 100 times better than

the resolution of the HST (Hubble Space Telescope).) The rotational velocity
distribution in the disk follows an exact Keplerian law around a compact dark

mass, and the velocity of the inner edge is 1080 km/s. From this one infers a

dark mass concentration of 3.6 x 107 Mo. As in the case of the Milky Way, there
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are no long-lived star clusters with -these extremal properties.
Finally, I would like to point out the possibility to study the relativistic re-

gion of a black hole with X-ray astronomy. Recent ASCA (Advanced Satellite for

Cosmology and Astrophysics) observations of MCG-6-30-15 and other Seyfert 1

galaxies have revealed that the 6.4 keV fluorescent iron line is very broad and

provides some evidence that the emitting region is orbiting close to a black hole.

Gravitational effects are apparently skewing the line shape [10, 4]. With the

greatly improved spectral resolution of XMM (X-ray Multi-mirror Mission), this

might become an important tool to obtain specific information on the gravita-
tional field in the relativistic X-ray emitting region. J. Wilms et al. have made

detailed studies, see their contribution in Chap. 5, see also B.C. Bromley et al.

Ill.

Sandip K. Chakrabarti:

The problems at hand are (a) whether black holes exist, (b) whether the

compact objects we call 'black holes' are actually those predicted by solutions

of Einstein's equations and (c) what is the best way to identify black holes.

Since black holes are necessarily black (save Hawking radiations which are

unobservable with present technology), their detections must be indirect. How-

ever, some of the evidences are more 'circumstantial' than others. For instance,
the origin, acceleration and collimation of jets, fast time variabilities, stellar ve-

locity dispersions etc. are far from convincing proofs. Measurements of the mass

of the central objects such as in M87 (4 x 10'MO) by HST spectroscopy or

in NGC4258 (4 x 107MG) by water maser emission or in our Galactic Center

(2-5 x 106M(D) by proper motion study of stars produce mass concentrations

of 2.0 x 107MG)/pC3, 2.5 x 109MOIpC3, and 6.5 x 109ME)IpC3 respectively. Sim-

ilarly, the measurements of mass function of binary systems indicated a mass

function of V404 Cyg to be f(M) = (6.08 0.06) ME), a few other candidates
have f(M) Z 3.0 ME). These objects may be strong candidates for black holes

but the nagging issue still remains: Are they black holes as predicted by Ein-

stein's equations or just some compact object with hitherto unknown equation
of state? Le., do these objects have horizons with all the associated properties?

In order to prove the existence of the horizons one must look for detailed spec-
tral signatures, since radiations forming the spectra come out of infalling matter
which respects the inner boundary condition (IBC) on the horizon. As is known,
the IBC selects completely different hydrodynamic and radiative hydrodynamic
branches of the global solutions of the governing equations. Unfortunately, till

today not all the equations could be written down with certainty in black hole

environment, what to talk about solving them. However, some of the predictions
of the existing advective models are sufficiently robust and do not depend on

the detailed models. For instance, the hard/soft transitions can be seen even in

neutron stars, but almost constancy of spectral slopes with change of luminosity
by factors of hundreds and particularly the photon index of -2.5 in weak power-
law tail of soft states are not seen in neutron stars. Difference of neutron stars
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and black holes cannot be made in terms of total luminosity (even if through
black hole horizons the entire energy can be advected and in principle makes the

flow non-luminous) since any number of physical processes (such as outflows) in

neutron stars may invalidate the argument completely.
With the recognition that we must rely on spectral signatures for a complete

stock taking of the black holes in the universe, it has become easier to identify
black holes. For instance, Cyg X-1, which is the first suspected candidate for

a black hole does not satisfy the mass function criteria at all, its f (M) is only
(0.24 0.01) MD. But it shows the desired spectral slopes in both hard and

soft candidates. Similarly, V404 Cygni and A0620-00 have large mass functions

and also behave understandably in quiescence states as predicted by advective

disk models. Supermassive black holes are difficult to be identified using spectral
signatures, because their change of state would take thousands of years.

Gerard 't Hooft:

For an elementary particle physicist, the question of the existence of black

holes has several aspects.
*, From a philosophical point of view, we will never be able to prove the existence

of anything with ultimate rigour. We cannot even prove that we exist ourselves.

Clearly, what we are trying to do is to provide proofs "beyond all reasonable
doubts".

9 In quantum particle physics, it is of importance to know whether some object
can exist in principle, even if its actual presence somewhere cannot be shown. A

particle that can exist in principle, will represent an element in Hilbert space,
and as such it will give important contributions to the Schr6dinger equation. We
call such particles virtual particles, and we want to know about them.

9 This is why we want to know whether black holes with masses between 1 mg
and 1 MD can exist, even if no astrophysical mechanism for their production
was known. Furthermore, the importance of the existence, in the above sense,
of these solutions of Einstein's equations is that they appear to be correct, ac-

ceptable solutions. If they did not exist, even in principle, this would imply a

significant deficiency in our understanding of Nature. Not only the physics of
the fundamental interactions would have to be revised, but even the laws at dis-
tance scales larger than centimeters, whereas these have been checked by many
precision experiments.
9 It is conceivable, however, that tiny black holes will turn out to be indis-

tinguishable from more conventional forms of matter: the spectrum of "black
hole states" might blend naturally into the spectrum of "elementary particles"
(loosely speaking, black holes are elementary particles) and vice versa. In this

case, large black holes (heavier than, say, a few milligrams) will still be so sig-
nificantly different from other forms of matter that in practice confusion will be

unlikely.
* For me, astronomical black holes represent the extreme other end of the scale.
I am impressed by the evidence produced by the astrophysicists, and I believe
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that they have come extremely close to proving the existence of black holes.

* There is the question of the existence of primordial black holes, in partic-
ular the ones with masses in the range of planetoids. These should decay, and

quantum theory predicts that once their masses have decreased to become that

of a small asteroid, they turn themselves into radiation energy through a vio-

lent explosion. Whether these really exist in our universe (not just virtually)
and whether these explosions can be or have already been observed, remains

extremely dubious, at best.

e I would like to know from the astrophysicists whether three-body interactions

in globular star clusters can produce black holes, which should come shooting
out of the center, singlets as well as doublets (P. Hut, private communication).
I would also like to know what the smallest mass is for a black hole that can be

produced via conventional astrophysical processes.

Edward Seidel:

Evidence for the existence of black holes, once considered fantasy by many,
is mounting these days on a monthly basis. Most astronomers now accept black

holes as a standard part of their observed universe, while only a decade ago many
were rather skeptical. As standard astronomical observations improve, more and

more black hole candidates are found, while existing candidates are even more

firmly thought to be actual black holes.

However, while such evidence is now very strong indeed, it is generally cir-

cumstantial. We still await direct and incontrovertible proof of the existence of
black holes, i.e., a detectable signal emitted by a black hole that unambiguously
identifies it. Gravitational waves emitted by black hole interactions should pro-
vide that "smoking gun" signal that not only proves that black holes exist, but
that will also reveal essential properties of the black holes. In particular, the
so-called ringing or quasinormal modes of the black hole are damped wavetrains

that excited rather generically from a perturbed black hole, and the wavelength
and damping time of these modes depending only on its mass and spin (and
charge, which is probably not relevant). In all numerical studies of black hole

formation, perturbation, and even collision, these modes have been strongly ex-

cited, and if detected they should uniquely identify the source as a black hole.
As gravitational wave observatories such as LIGO, VIRGO, and GE0600,

are under construction around the world, the gravitational wave signals expected
from black hole interactions is gaining increasing attention. Black hole mergers
from binary coalescence is now considered one of the most promising sources of

gravitational waves, and according to a recent study by Flanagan and Hughes
[5], such systems may well provide the first gravitational waves to be seen after

the detectors go online in a few years. In what follows I summarize the main

points of their very detailed analysis.
There are three phases of black hole coalescence: (a) inspiral, (b) merger, and

(c) ringdown. The inspiral is the adiabatic orbit phase where the holes slowly
spiral together, before they are around r = 6M apart, where M is the total mass



22. The Definitive Proofs of the Existence of Black Holes 487

of the system. At this time, the merger phase begins, where dynamic instabilities

drive the holes towards each other in near free fall. This is a most violent stage
of evolution for which numerical relativity will be essential to compute wave-

forms. Finally, a single, distorted black hole results, which will quickly settle in

to the ringdown phase, where normal modes are emitted. According to Flanagan
and Hughes, taking account of the sensitivity and bandwidth of the first genera-
tion detectors coming online by the year 2001, low mass coalescence (< 30 solar

masses) should be seen via their inspiral waves, while high mass systems (be-
tween 100 and 700 solar masses) should be seen via their ringdown waves. Both

types should be visible out to about 200 Mpc, and the event rate for the low

mass systems should be of order several per year. By using numerical relativity
calculations as templates for the merger phase, one can enhance the detection

rate, and very significantly, one can analyze the signals to better understand the

sources.

This is a very exciting time for black hole physics: gravitational wave astron-

omy is about to be born, and fortunately numerical relativity is on the track of

simulations that will be needed to enhance and understand the upcoming obser-

vations. The next decade should provide many proofs of the existence of black

holes, and a plethora of information about them as well.

Werner Israel:

Twenty years ago I spent a very pleasant sabbatical year at the
...

Institute
in

... . Although this story is true, I have blanked out the names because its

significance is generic - it could have happened at any of dozens of institutions

at that time. Shortly after my arrival there was a coffee party, and after some

warm words of welcome, the Director of the Institute remarked, "Werner is going
to be with us for a year. We should all talk to him and try to cure him of these

silly notions he has about the possibility of black holes."

I was very well treated and enjoyed the most cordial personal relations with

my hosts throughout that year, but in this one respect at least I'm afraid I

proved something of a disappointment to them. The cure failed. As my wife will,
I'm sure, readily confirm, I am the most unreasonably mulish of people, also

fairly deaf and impervious to foreign languages.
I recall going to lunch one day with about a dozen members of the Institute

- staff and graduate assistants - and I decided to take a poll, asking each in

turn whether he believed that black holes are possible. There was a string of

firm denials, except for one assistant, from whom I got the interesting response:
"Not usually. But when I'm applying for a U.S. research grant, then I believe -

temporarily".
I am still in touch with a few of the colleagues who gathered around the table

that day. Not one has changed his views.

With the foreshortening that memory lends to past events, it now seems that

in December 1967, John Wheeler declared, "Let there be black holes". and lo!

there were black holes. But this is not how it really happened. Comprehension
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of this idea took years, acceptance much longer. I remember Felix Pirani's words

in 1967: "The Schwarzschild singularity at r = 2m is almost certainly a fraud -

but we don't yet know what kind of fraud".

There was an incident in Canada in 1979 when the Winnipeg vice squad,
raiding a video store, seized copies of (among others) the Walt Disney movie,
"The Black Hole", on suspicion of obscenity - probably the only time a Disney
film has ever suffered this indignity.

Of course, the disbelief of my Institute colleagues had nothing to do with

observations. They were put off by the inherent absurdity of the concept - the

inevitability of singularities, space turning into time, and so on. At that time,
observational progress was lethargic..- It took ten years before the first serious

black hole candidate Cygnus X-1, optically identified in 1972 by Tom Bolton of

Toronto and by Webster and Murdin in England was joined by a second, LMC
X-3, identified by a team at the Dominion Astrophysical Observatory, Victoria,
B.C.

But, as we have heard at this School, in the last few years the observational

arena has been transformed by the Hubble space telescope and sophisticated
ground-based techniques. We now have compelling evidence for the presence of

compact dark objects in galactic nuclei with masses ranging from millions to

billions times that of the sun.

The most convincing and extraordinary case is NGC 4258. Here one is ob-

serving (by interferometric techniques in the microwave range) maser radiation

from water molecules in a dusty torus orbiting just 0.3 light-year from the centre,
indicating the presence of an invisible mass of 36 million solar masses within this

radius.

In our own galaxy, the recent work of Eckart and Genzel, who measured

proper motions of three dozen stars within 1/30 light-year from the centre, point
convincingly to a central dark mass of 2 million suns.

At the 1996 "Texas" symposium in Chicago, there were even reports of the
first direct observational evidence for general-relativistic strong-field effects and

for event horizons. The Japanese X-ray satellite ASCA has found peculiar fre-

quency shifts in the X-rays from galactic nuclei, which (it is claimed) can only
be caused by strong gravity. Richard Mushotzky of the Goddard Space Institute

reported on observations of X-ray novae during intervals when accretion is slow.

Those thought (on the basis of mass) to contain black holes are dimmer than

ones with neutron stars, presumably reflecting the difference between the hard

surface of a neutron star and an event horizon.

Despite all of these developments, many who rejected black holes in the 1970s

as conceptually absurd remain hard-core skeptics today. The moral I should like

to draw is this. Nothing in science is 100 % certain. But a time arrives when

the balance of probabilities has become so overwhelming that the burden of

proof must pass to the opposition, and further attempts at rational argument are

pointless. We still have flat-earth societies; 87 % of U.S. parents want creationism

taught in schools; and, as for me, I still check my horoscope in the newspaper
from time to time. Today, if one encounters a skeptic for whom non-existence of
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black holes is a matter of religious faith, perhaps it is kinder (and certainly less

trouble) not to get involved in an argument.
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Exercises

1 Exercises to the lectures of W. Collmar/V. Sch6nfelder

1.1 The Eddington limit plays a fundamental role in astrophysical sources which

are powered by accretion of matter. It follows from the requirement that the

radiation pressure does not overcome the force of gravity.

Show that for spherical symmetric geometry

LEdd = 47rGMmpCO'T z: 1.3 x 1038Meerg/sec

where M is the mass of the accreting object, mp the proton mass, c the

velocity of light and O'T the Thomson crossection. (Assume that the material

consists of hydrogen and is fully ionised and that the radiation scatters only
on ambient electrons.)

1.2 In the field of AGNs the broad band energy spectra from radio to -/-ray ener-

gies are very often plotted as vFv versus v -plots, where v is the frequency and
Fv = dF(v) ldv represents the differential energy flux at frequency v per unit

interval of phton frequency (Fv has the dimensions erg cm
-2 sec' Hz-').

Very often, instead of the differential energy flux, the differential photon
number flux N, = dN(v)ldv is given, where Nv is the measured photon
number flux per unit frequency interval.

Show that
dF(v)

vFv = v2NV=
d(In v)'

hence that vFv is the energy flux per natural logarithmic frequency interval

(not per decade of photon frequency).

2 Exercises to the lectures of N. Straumann

2.1 Repeat the 3 + 1 reduction of Maxwell's equations for a static spacetime (e.g.
the Schwarzschild solution). Make little use of the notes. (This was already
achieved by Einstein during his Prag time.)

2.2 Specialize Ex. 2.1 to electrostatics:

d(aS) = 0, d(*9) = 47rp.

With the first equation one can introduce a scalar potential (P with aS

-H.

F.W. Hehl, C. Kiefer, R.J.K. Metzler (Eds.): LNP 514, pp. 491 - 507, 1998
© Springer-Verlag Berlin Heidelberg 1998
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a) Consider the Schwarzschild background and write this differential equa-
tion for (P in terms of the standard coordinates r, V,  p. Insert an f-pole
ansatz

(P f (r)  p)
and derive the differential equation for f (r) outside the charges. Can you
solve this?

b) Perhaps, somebody is able to find -t for a point charge e located outside
the horizon. The solution of this problem was found early by E. Copson,
Proc. R. Soc. A118, 184 (1928); see also R. Hanni and R. Ruffini, Phys.
Rev. D8, 3258 (73).
It is given by:

e7n
+

ar

e (r - m)(a - m) - m2Cos

ar [(r - M)2 + (a - M)2 - M2 - 2(r - m)(a - M)COStg + M2 COS2,0]1/2
2.3 Specialize to magnetostatics and consider an axially symmetric purely po-

loidal field

B =

1
dT1 A dW (T-1: flux function).

27r

Derive the differential equation for T, on a Schwarzschild background. Try
to find T-1 for an asymptotically homogeneous .6-field.

2.4 For comparison with the solution in section 3 of the lectures, consider in

ordinary electrodynamics a rotating, ideally conducting, uncharged sphere
in a homogeneous magnetic field (unipolar induction). Determine the f-field.
Compute the voltage between the north pole and the equator.

2.5 Show that div = 0 for the Kerr solution.

2.6 Fill in the details which lead to the f-field in section 3 of the lectures.

2.7 Consider this f-field along the symmetry axis and show that f = Eo ,,

Er -
-

a(p
,

<P = aBo -I
-

2Mr 2- ,

r r2 +a

A charged test particle is thus accelerated. Find a solution of Maxwell's

equations with a total charge Q 54 0 such that there is no force on the test

particle. (Answer: Q = -2BOJ, sign?). Put in numbers and show that this

charging up (by an exterior plasma) is astrophysically of no interest.

2.8 Energy conservation for a charged test particle in a combined stationary field

g, F: Let be a Killing field such that L F = 0. Choose a gauge such that
also L A 0 (F = dA). Show that

(,7r,  ) = const., 7r = mu + A,



23. Exercises 493

where u is the 4-velocity. Let A = -4idt + A and i9t.

Then this observation implies

E =- -m(u,  ) + e P = const.

2.9 Analyse the idealized electric motor with a black hole as rotator in Fig. 8 of

the lectures.

2.10 Prove the identity 6(m A X) = -m A JX in section 9 of the lectures.

2.11 Supplement to sections 8 and 9 of the lectures:

Let u be the 4-velocity of the plasma and u = -y(eo +,6) its decomposition
relative to the FIDOs.

(a) Write the particle number conservation V - (nu) = 0 (n =number density)
in the form

(at - L ) (-yn) + ' - (-yanU) = 0, (1)

which reduces in the stationary and axisymmetric case to

V - (an d) = 0, il = (2)

(b) Set

gpol jP01 (3)
an

and show that 9 = igB (ideal MHD condition) leads to

+ 7flF (4)
an a

Write the toroidal part of il as in section 8.11 (with angular velocity f?)
and conclude

(S? - SMCD Bw (5)
n

(c) Insert (4) into (2) and show that one finds

d,q A dT1 - 0 ==: q = q (TI). (6)

(d) Assume a toroidal velocity field 6 and deduce from 9 - iUB and ag

-d4i + i A that

&P dP,
27r

which implies dS? A dTl = 0, and hence S? = fl(fl.
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2.12 ADM formalism for electrodynammics

Insert the 3 + 1 reductions for F and *F into the Maxwell Lagrangian - IFA2

*F. Use the representation of 9 and 8 in terms of the potentials P and A,
and show that

-
1F A *F = dt AC,
2

where C is the 3-form

1C =:  Pd*S -c9tAA*9 - -a (E A *9 + B A *B)+ (i,3B)A*S+exact differential.
2

Regard in the action principle

S ( P' S' A) =f C A dt, with B = dA,

the fields  P, 9, and A as independent, and verify that one obtains the correct

field equations:

d*E = 0, (constraint eq.) (7)

atA + d-P + a-6 - iOdA = 0, (dynamical eq.). (8)(,9t - LO) * 9 = d(a * dA),

!P can be described arbitrarily. The dynamical evolution of 9 and B deter-
mined by (8), is independent of 4i. Prove this fact (which reflects gauge
invariance).

2.13 Invent other exercises.

3 Exercises to the Lectures by M. Heusler

3.1 Ricci scalar of a stationary metric

Derive the formula

)
-

2 A(3)S +
S2

R = R(3
- (da, da)
S 2

for the Ricci scalar with respect to the stationary metric

g = _ S2(dt + a) 0 (dt + a) + g(3).

Hint: Solve the Cartan structure equations for the metric gio = 0, goo 1,
= e) and the tetrad 00 = S(dt + a), 0' = dx'.9ij Z3
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3.2 Conformal transformations

Consider the conformal transformation

g = 02g(3)

of the three-dimensional metric g(3). Show that the Ricci scalar and the

Laplacian of a function S with respect to q become

02R = R(3) 4
,A (3) Q 2- dfl, dS?)

S?
+ _j 2 (

f22ZS A(3)S + (dfl, dS)

where is the inner product with respect to g(3). Use these formulas with

Q = S, and the result of the previous exercise, to obtain the expression (3)
for the Ricci scalar with respect to the metric (1).

3.3 Target space for static vacuum gravity
Use the transformation (11) to establish (12). Then use the stereo-graphic
projection, Re(E) = x(z + I)-I, Im(E) = y(z + I)-', to show that this is

the metric of the pseudo-sphere (a space of constant negative curvature):
pS2 = f(X, Y, Z) C JR3 I _Z2 + X2 + Y2 - _11.

3.4 Stationary Maxwell equations

Compute the Maxwell equations, d*F - 0, for the stationary gauge potential
(13) with respect to the metric (1). Result:

dB = 0, d (o--'*-E + a A B) = 0,

where

E =- do, B =- o,*-(P +Of)

Show that E and B coincide with the usual definitions of the electric and the

magnetic one-forms, E -
-F(Ot, - ), B = (*F) (at, - ). Also use the definition

(2) and the general identity d *(W10,2) = 0 to establish the four-dimensional

form of the stationary Maxwell equations,

d *
do

_ 2o
W

- 0, d*
do

+20
W

0,
01 0,2 0' 0,2

where o is the magnetic potential, B =- do.

3.5 Effective action for the stationary EM system

Use the decomposition (13) and the metric (1) to establish the effective

action (16). Hint: It remains to show that

F A *F - dt A [o-(F- + Of) A  (F + Of) o,-ldo A  do] .
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3.6 Effective action in terms of scalar potentials

Use the Lagrange multiplier method (with the constraints dP = 0 and

df = 0) and the definitions (19) and (20) to pass from the effective ac-

tion (16) to the effective action (21), involving only scalar potentials. Hint:

First substitute A by 0, and then a by Y.

3.7 Ernst potentials
Derive the equations (27) for the Ernst potentials from the effective action

(26).

3.8 Sigma-model form of the EM action

Establish the expression (30) for the effective action of the EM system in

the presence of a Killing symmetry. Hint: Use the definition (28) of (P to

compute the current matrix jA. Result:B

B VB vcdf;c.jA = 2sig(N) (vBdDA _ f,AdVB) + 4 VA

(Also note that Vcvc nABVAVB = -sig(N); and hence, Vcdvc = -vcdvc.)
Show that

1
(jA ,

jB 2 sig(N) (dVA , dVA) + 2 VA'5B (d;V-A ,
dvB)

4 B A

and use the definition (29) of the Kinnersley vector in terms of the Ernst

potentials to complete the derivation.

3.9 Sigma-model equations

Show that the variation of the effective action (30) with respect to the matrix

 P yields the matrix current conservation law

d j = 0, i.e.,
1 1=9" (Ji)-'B) j = 0V9

Hint: First establish 6J = J<P-'&P - (P-1&PJ + d( P-16fl.

3.10 Surface gravity of a static horizon

Show that the surface gravity of the Killing horizon in a static spacetime is

constant. Hint: First establish the identity

2 di,i * w = -i,(dN A d ) + d (-r,  ) A dN +  A di,dN,

for an arbitrary vector field -r and a Killing field  with norm N = ( ,  ) and

twist w = .1 * ( A d ). (Here i, denotes the interior product, e.g. [i, (a A,3)],
2

-r '(a,,O, -,3,a,) for one-forms a and 3.) Now use the fact that the LHS

vanishes identically if the spacetime is static. Finally, use the definition (35)
of r, in order to evaluate the RHS on the horizon. (Result: 0 = (7-,  ) [ Adr.].)
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3.11 Ricci identity for Killing fields

Prove the Killing field identities

d *  - 0, L * = * L ,

A = 2 R( ),

where  is an arbitrary Killing one-form, L is the Lie derivative with respect
to  , 6 =- - (*d * d + d * d*) is the Laplacian, and R( ) is the Ricci one-form

with components R( ), =- R., '- Hint: Use the Killing identity, V"k, +

V,km = 0, and the general identity (for arbitrary vector fields) (V,V.
VpV,) ,3 = R111,'8 6a.

3.12 A twist identity

Use the results of Exercise 11 to prove the identity

dw = *[6 A R(6)],

where w is the twist of the Killing field 6, w -= .1 * (6 A d6). Hint: For arbitrary2

p-forms a and vector fields (one-forms) r one has the identity

*(a A -r) a.

Solution:

d(*6 A d6) di * d6 (L Z d) d6 = *L d6 - i d * d6

i * A6 *(A6 A 6) - 2 * [6 A R(6)].

3.13 The vacuum staticity theorem

Complete the proof of the vacuum staticity theorem. In particular, establish
the differential identity (44) for a Killing field (one-form) k with norm a --

- (k, k) and twist w = .1 * (k A dk). Hint: First show that
2

k 2 2
d

01 a2
*(kAw)

0-2
Zk * W

3.14 The Israel theorem

Complete the proof of the Israel theorem:

(i) Compute Goo, Gil and Roo for the Israel metric (50).
(ii) Show that the vacuum equations and the expressions (5l)-(53) imply the

inequalities (54), (55). (iii) Establish the asymptotic behavior (57). Hint:

Asymptotic flatness implies the existence of asymptotic coordinates fX4
such that S2 = I - 2M/r + O(r-2), where r

2
= 64vxAx'1. Also use p-2 =
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(dS, dS), Kab ::--: (2p)-109abl,9S, and gab -+ r'dfl2, as r -+ oo.

(iv) Establish the horizon behavior (58) of KIS. Hint: Derive the formula

IRa ,6 R"3^16 -

1
K2+ KabKab

+ 2
(tp, tlp)-

I
8 S2P2 P2

for the curvature invariant, to conclude that K and Kab vanish on the hori-

zon. Use this in the Gil vacuum equation.

3.15 Komar mass of a static spacetime
Derive the mass formula (60) for a static vacuum black hole spacetime. Hint:

The Komar mass is defined by the asymptotic flux integral

M = __

1
*dk

87rG fS2
Use Stokes' theorem, the Ricci identity [d * dk = 2 * R(k)], and the Einstein

vacuum equations to convert this in an integral over the horizon. Evaluate

the resulting expression in the Israel parametrization (50) of the metric.

3.16 Surface gravity in Israel parametrization
The surface gravity of a Killing horizon, generated by the Killing field (one-
form) k, is obtained from the formula (see, e.g. Heusler 1996b)

K2 _1 (dk, A) on H[k].
4

Show that r, = PH1 in the Israel parametrization (50) of the metric.

3.17 Ricci tensor of a static metric

Derive the components of the Ricci tensor with respect to the three-dimen-
sional static metric -p'dt2 +  - Result:

Rtt = pdp, R-ta = 0,

-F7ab = kb - VltbtaP

3.18 Consistency of the reduced EM equations
Use (66) and (67) to show that

tb
1
Tr IOjb a a

tb (Pjdab =

4 (tbJ - taJb) + J b

Conclude from this that the Bianchi identity for dab and the definition
ja = q5-lta4i imply the conservation laws (68), tb(PP) = 0-
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3.19 EM equations in Weyl coordinates

Derive (70) and (71) from (68) and (67), respectively. Use Weyl coordinates

and the metric

e2 h (p, z) (dP2 + dZ2)

3.20 Ernst equations
Use _4 - -P2dt2 +  and the transformations (74) to derive the Ernst

equations (72), (73) from the three-dimensional equations (27). Also es-

tablish the form (77) of the Ernst equations with respect to the metric

 = factor - [(x2 - I)-'dX2 + (1 _ 92) -1dy2 ]. Show that F and A accord-

ing to (78) are solutions to the Ernst equations.

3.21 Explicit representation of the electrovac coset

Derive the formula (88) for the trace of the relative difference Tz _= 452!Pl 1

Hint: Use the definitions (28) and (29) to express 1P in terms of the Ernst

potentials,F and A. Result:

JgJ2 + 21A 12 + 1 1 g12 + (e _ S) _ 1 2A(E - 1)
I S 12 + (g _ e) _ 1 1 S 12 - 21A 12 + 1 2A(E + 1)

2X 2a(S - 1) 2a(S + 1) 21A 12 + g)

4 Exercises to the lectures by W. Israel

4.1 For the two following examples (and for other purposes) it is useful to note

(and even check) that, for the 2-metric

ds2
= A2dX2 + B2 dX2

2

the curvature scalar is

2 A2 B,
R +

AB B A
,2

The subscripts denote partial derivatives.

4.2 Vacuum polarization and Hawking radiation in 2-dimensional black

holes

Take the 2-metric in the form

dr2

d'52 f (r)dt2,
f (r)

with an event horizon at r = ro, so that f (ro) = 0, f (ro) = 2K. Introduce
retarded and advanced times u, v by

dt dr/f (r) =
dv - -n"

dx 'Idu = -fldxt'
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and the corresponding Kruskal coordinates U, V by

dU = -rUdu = -Ldx", dV = rVdv = -N,,dx".

Take the stress-energy tensor in the form

TI" = IT,,,'gi" + E(Pf' + n"n) + Ff"t'
2

so that T," corresponds to "vacuum polarization", E is an isotropic radiation
field and F the net outward flux.

By re-expressing TO' in term of the Kruskalized lightlike vectors L11, NA,
show that:

T"' regular on H+ (T,,', E) = 0(l), E + FO(U2),
Tt" regular on H- (T,, ', F) = 0 (1), E =O(V2).

Check that the conservation laws require

I d
F'(r) = 0, E'(r) = - -f (r) T,,, ' (r).

4 dr

For a massless scalar field, T,' is known to be given by the "trace anomaly"

T,
h
R

h
f" (r).

247r 247r

The "Boulware vacuum" state of the field appears empty (modulo irremov-

able vacuum polarization) to stationary observers (i.e. the notion of positive
frequency is defined with respect to the stationary time coordinate t). The

condition on the stress-energy is that TAI -* 0 as r - oo. Show that, for

the Boulware vacuum,

EB ffil f12 , FB = 0 (h
2 4

Show that the Boulware stress-energy is that of a stationary fluid with energy
density and pressure given by

PB -
-1 f

f12
PB

P
247r 4f 247r 4f

What is the origin of the negative terms? (Note that stationary observers

have acceleration a = f'12V,'f_.) Show that the Boulware stress-energy is

singular on both horizons.

The Hartle-Hawking "vacuum" appears empty (modulo vacuum polariza-
Avtion) to free-falling observers on the horizon. The condition is that THH is



23. Exercises 501

regular on both horizon sheets. Show that EHH (.Iffif + K2 1 f12)487r 2 4

and that

f" +
K2 1 f12 2 1 f12

PHH --

247r f
PHH

247r f

At infinity, this represents a uniform distribution of black-body radiation
with

2

PHH PHH ';Zz -

247r

Compare this with the result

P P - 7rT2
6 .

for zero-mass scalar Planck radiation in two dimensions, to obtain T,,
r./27r.
The Hartle-Hawking state thus represents a black hole in equilibrium with
its own radiation, confined within a large spherical box.

Verify that the Hartle-Hawking state truly represents "material" in ther-
mal equilibrium by showing that the entropy density S(r), defined by S =

(p + P) IT (appropriate for zero-mass "particles" with vanishing chemical

potential), satisfies Gibbs law TdS = dp. (T(r) is the locally-measured tem-

perature.)
The Unruh vacuum is the state which appears empty to stationary observers
on _T- (using time v) and to free-falling observers on the future horizon (using
time V). It is the state appropriate for a black hole formed in a gravitational
collapse (so that the past horizon is not a physical part of the spacetime).
The boundary conditions on T4' are: no incoming radiation from 1- and
D" regular on H+. Show that

EU _-

1 1
ffl, f12

,
F =

7r
T.2.

487r 2 4 12

Conclude that, in the Unruh state, the black hole is emitting radiation at

the Hawking temperature.

Show that the stress-energy tensor for the three states are related by

2

(P")U = (T4')B + e4tv)
487r

K
2

(Tl"v)HH = (T4v)u + -n,4nv.
487r

Comment on the effect of these added lightlike fluxes on (i) regularity of

horizons and (ii) the conservation laws.
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If the black hole has an inner horizon at r = r-, show that all three stress

tensors become singular on its ingoing sheet (the Cauchy horizon) and that

in the Unruh state this is due to a blueshifted influx of negative energy
-

' T ' nAn' at the Cauchy horizon, where T
12 2H CH is the Hawking temperature

of the inner horizon.

4.3 Every 2-metric can be writen in conformally flat form

ds2 = F-2 (dX2 - dt2) .

The stress tensor for a quantized massless scalar field in this geometry is

v 2 (Tv)
h

F (F',A
1

TA = F
tj

- JvF",,) + 6F,F,"
flat 127r A 2  ' '

(The comma denotes partial differentiation, and indices on the right-hand
side are raised with the flat metric qAv.) Check that this expression has the

correct trace and is conserved.

4.4 Moving mirror in 2-dimensional spacetime
Let v = f(u) represent the path of a mirror in the spacetime

ds2= -du dv = dX2 - dt2.

Defining F(u) = [pq-1/2' show that the mirror velocity and acceleration

are u" = (! Ru, dv) = (F, F-1) and a" - F'(u) (F, -F-1).d-r dT

Hence the (signed) magnitude of a' is a = -F(u) (counted positive for
acceleration to the right), and da/dr = -FF". Let T,,' represent the ex-

pectation value of stress-tensor for a massless scalar field in the in-vacuum

(no influx from I- on left and right sides of the mirror).
Now focus on the right side v > f (u). Make the conformal transformation

jS2 = F-2 (u)dS2

holding the path v f (u) fixed. Calculate the corresponding stress-tensor

T,,V.
But in this new geometry the mirror is no longer accelerated! To see this,
make the coordinate transformation ii f (u), V = v. Then

dS2 da d;v-

and the path of the mirror is V = u-, i.e. ,i = 0. Hence T,' = 0. (This follows
from staticity, conservation, tracelessness, and the in-vacuum condition.)
Deduce that the original stress tensor has the form

T"'
1 da

f"t,
127r d-r
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and represents radiation streaming from the mirror to the right. It has neg-
ative energy if da/d-r > 0.

What happens on the left?

What is the precise meaning of & in the above equation (including the
normalization factor)?
Derive the force of back-reaction on the mirror, and comment on the possi-
bility of a runaway solution.

4.5 Two concentric spherical massive thin shells move at the speed of light (one
inwards and one outwards) in a spacetime with metric

2
=

dr2
2 02 _ t2ds

7-( d g (r) d
r)+ r

Their intersection splits the spacetime into four sectors A, B, C, D according
to

in' out'

out in

The functions f, g have different forms in these sectors. Prove that at the
radius ro where the shells cross we have

fA (rO) fB (rO) = fC (rO) fD (rO)

(Dray-'t Hooft-Redmount relation).
(Hint: Let n', & be ingoing and outgoing radial lightlike vectors at ro,
normalized by f - n 1

- Writing the metric as

ds2
= gabdxa dxb+ r

2 df22,

it follows that

f = gab (aa r) Obr) , gab - -2t(anb),
so that we have relations of the form

f = -2 (Dt r) (Dn 0

in each of the four sectors. Now Dtr and Dnr must be continuous across the
outgoing and ingoing shells to keep their areas continuous.)
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5 Exercises to the Lectures by G. It Hooft

A. On the black hole metric without quantum mechanics

5.1 Given a spherically symmetric metric of the form

2 2
dr2

2 02,ds = -P(r)dt + j5-('r)
+r

r)
d

where the function P(r) has its first zero at r = r+. Show that the general
coordinate transformation

xy = exp
C

dr xly = exp Ct,f P(r)

leads to the generalised Kruskal metric

ds2 = 2A(r)dx dy + r2dR2

and express A(r) in terms of P(r). Show that A is regular at x = y = 0.

5.2 Solve the Einstein equations for a spherically symmetric black hole that

has one or several shells of massless moving particles moving in and out

radially. In Eqs. (3.6) of [1] this means that the functions g(x) (for ingoing
matter) and h(y) (for the outgoing mater) consist of one or several Dirac

delta functions. Show that the resulting metric consists of several regions
glued together, such that in each of these regions the original Schwarzschild

metric holds with masses Mi. They are seperated by the dust shells. Where

two dust shells cross (r = ro), the four adjacent regions obey

(ro - 2M,)(ro - 2M3) = (ro - 2M2)(ro - 2M4).
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B. Quantum Field Theory in a curved metric

5.3 To the Rindler observer, the operators that annihilate particles at energies
t

w are a, (in region I), and aii (in region II). The relations between aj, a,,

aii, ati on the one hand, and the operators a and at relevant to the inertial

frame on the other hand, are given by Eq. (5.27) in [1]. Consequently, the

inertial vacuum state If?), defined by

a IS?) = 0,

obeys Eqs. (3.20) of my lecture:

ailf2) = e"atHIS?)
a,.rlf2) = e"atIO).

Prove that, in terms of Rindler particles, If?) is the entangled state

00

S?) e-211w 1: In), In),, e".
n=O

5.4 Particle production at a cusp

Consider a spacetime with a cusp on the plane x = t = 0. This means

that away from this plane, spacetime is everywhere flat, but on the plane
we have (infinite) curvature: two particles, 1 and 2, passing the plane at

opposite sides with initially the same velocity v, will have different velocities

afterwards, such that one will be Lorentz-boosted with respect to the other

(in the x-direction). The Lorentz boost parameter is -y- Show that, in a

quantum field theory, if there is a vacuum at t < 0, there will be particles at

t > 0. Compute the spectrum of these particles. This spectrum is ultra-violet

divergent, a divergence that must be ascribed to the infinite sharpness of the

cusp assumed.

C. Black Hole thermodynamics

5.5 The general Kerr-Newman black hole with mass M, angular momentum

J = Ma, and charge Q has its horizon at

r = r+ = M + V/M2 - a - Q2.

Its angular rotation velocity at the horizon is S? = a/(r2 + a2), its electric
otential at the horizon is 0 _- Qr+/(r2 + a2) and its temperatur isp +

I V/M-2 a2 - Q2
T

2 227r(r+ + a
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Show that its entropy S is 1/4 times the horizon surface area, or

S = 7r(r2 + a2),
and that (see [3])

M2 Q2 + 7rQ4 S 7rj2
- Q2 2 2S2--i-s+-+ - +a +4T

2 47r S
dM TdS + f?dJ + ON.

Show that if we express the mass M as a function in terms of the temperature
T, the charge Q, and the angular momentum J, a singularity develops at

V2 + Q4 =
4 T2S3

.
This is sometimes interpreted as indicating a phase

transition [3].

D. Gravitational shock wave

5.6 Consider two flat spacetimes glued together at a lightlike surface x- = 0,
such that there is a shift in x+:

X+ - X
+

)
= f(fl,W

where j stands for the two transverse coordinates. Show that if f (J ) is a

linear function of Jv-:

f a+

then this spacetime is flat. In all other cases, there is a Dirac delta distributed
curvature on the plane x- = 0.

5.7 Prove that the Green function F(O) obeying Eq. (10.24) of [1]:
_52 F(S?, f?') + F(S?, fl) = j2(fl _ DI),S?

can be written as Eq. (10.29),
1 1 f

7`0 dw cosh (1wv'_3)
F(0) 2

27rV2 cosh (.!7rv"3) 0 Vcos 0-+CosW
2

which proves that F > 0.

E. Horizon algebra

5.8 On our flat two-dimensional model for the horizon, we have defined the Green
function f (., ) obeying 62fp ) = _62 Derive all commutation rules (8.1
and 8.2 of my contribution) for the quantities Pin,out (i ) and Uin,out (J ) from
the postulates

out = 62R Uin i

= _62U ut,Pin 0

[Uin(-' )i Uout( )] = if (-i - (9)
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5.9 Show that a local displacement operator Pj,,(., ) can be defined,

Pin = PJUin

such that it obeys all commutation rules required for the operator

D (d) E exp, i f d Pin (fl d2X

to generate an Jr' dependent translation a(fl. Find the commutation rules

between these operators An and the other in-operators, including itself. The

slight differences between the P and U commutation rules stem from the

difference in their transformation rules: P is a density, U is a scalar.

Note that the out-operators commute non-locally with the Pi.

5.10 Define a new operator (J(.;v-) by

P
. 'int

and prove, with our definition of the operators P of the previous exercise,

(91 U1 - 092 U2 = (91 Uin 191 Uout - (92 Uina2 Uout iand

alU2 + a2U1 - lyluinI92Uout + a2UOlUout -

From this, one can define covariant operators

XP = Xp (Uin i Uout i
-' +

which tend to obey the covariant equation

(9jXI',9jX,, = A6ij -
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